351 research outputs found
Recommended from our members
Towards prognostic functional brain biomarkers for cervical myelopathy: A resting-state fMRI study
Abstract: Recently, there has been increasing interest in strategies to predict neurological recovery in cervical myelopathy (CM) based on clinical images of the cervical spine. In this study, we aimed to explore potential preoperative brain biomarkers that can predict postoperative neurological recovery in CM patients by using resting-state functional magnetic resonance imaging (rs-fMRI) and functional connectivity (FC) analysis. Twenty-eight patients with CM and 28 age- and sex-matched healthy controls (HCs) underwent rs-fMRI (twice for CM patients, before and six months after surgery). A seed-to-voxel analysis was performed, and the following three statistical analyses were conducted: (i) FC comparisons between preoperative CM and HC; (ii) correlation analysis between preoperative FCs and clinical scores; and (iii) postoperative FC changes in CM. Our analyses identified three FCs between the visual cortex and the right superior frontal gyrus based on the conjunction of the first two analyses [(i) and (ii)]. These FCs may act as potential biomarkers for postoperative gain in the 10-second test and might be sufficient to provide a prediction formula for potential recovery. Our findings provide preliminary evidence supporting the possibility of novel predictive measures for neurological recovery in CM using rs-fMRI
Growth of CrSi2 Nanostructures Using CrCl2 Powder on Si Substrates
Chromium disilicide (CrSi2) nanostructures were grown by the exposure of Si (111) substrates to CrCl2 vapor in an argon gas flow at atmospheric pressure without using any metal catalyst. Dependence of the growth condition on the structural property was investigated. Hexagonal-shaped CrSi2 microrods were grown at 750 °C with 0.05 g of CrCl2. As the quantity of CrCl2 increased to 0.1 g, the bundle of CrSi2 nanowires with microrods and web-liked CrSi2 nanostructure with turning angles were grown at 750 °C and 700 °C, respectively. The preliminary discussion on the growth mechanism of CrSi2 micro- and nanostructures was carried out
A Novel Gene, fudoh, in the SCCmec Region Suppresses the Colony Spreading Ability and Virulence of Staphylococcus aureus
Staphylococcus aureus colonies can spread on soft agar plates. We compared colony spreading of clinically isolated methicillin-sensitive S. aureus (MSSA) and methicillin-resistant S. aureus (MRSA). All MSSA strains showed colony spreading, but most MRSA strains (73%) carrying SCCmec type-II showed little colony spreading. Deletion of the entire SCCmec type-II region from these MRSA strains restored colony spreading. Introduction of a novel gene, fudoh, carried by SCCmec type-II into Newman strain suppressed colony spreading. MRSA strains with high spreading ability (27%) had no fudoh or a point-mutated fudoh that did not suppress colony spreading. The fudoh-transformed Newman strain had decreased exotoxin production and attenuated virulence in mice. Most community-acquired MRSA strains carried SCCmec type-IV, which does not include fudoh, and showed high colony spreading ability. These findings suggest that fudoh in the SCCmec type-II region suppresses colony spreading and exotoxin production, and is involved in S. aureus pathogenesis
Structural and compositional properties of brown dwarf disks: the case of 2MASS J04442713+2512164
In order to improve our understanding of substellar formation, we have
performed a compositional and structural study of a brown dwarf disk.
We present the result of photometric, spectroscopic and imaging observations
of 2MASS J04442713+2512164, a young brown dwarf (M7.25) member of the Taurus
association. Our dataset, combined with results from the literature, provides a
complete coverage of the spectral energy distribution from the optical to the
millimeter including the first photometric measurement of a brown dwarf disk at
3.7mm, and allows us to perform a detailed analysis of the disk properties.
The target was known to have a disk. High resolution optical spectroscopy
shows that it is intensely accreting, and powers a jet and an outflow. The disk
structure is similar to that observed for more massive TTauri stars. Spectral
decomposition models of Spitzer/IRS spectra suggest that the mid-infrared
emission from the optically thin disk layers is dominated by grains with
intermediate sizes (1.5micron). Crystalline silicates are significantly more
abondant in the outer part and/or deeper layers of the disk, implying very
efficient mixing and/or additional annealing processes. Sub-millimeter and
millimeter data indicate that most of the disk mass is in large grains (>1mm)Comment: 17 pages, 10 figures, 7 tables, accepted for A&
Distribution and Regulation of the Mobile Genetic Element-Encoded Phenol-Soluble Modulin PSM-mec in Methicillin-Resistant Staphylococcus aureus
The phenol-soluble modulin PSM-mec is the only known staphylococcal toxin that is encoded on a mobile antibiotic resistance determinant, namely the staphylococcal cassette chromosome (SCC) element mec encoding resistance to methicillin. Here we show that the psm-mec gene is found frequently among methicillin-resistant Staphylococcus aureus (MRSA) strains of SCCmec types II, III, and VIII, and is a conserved part of the class A mec gene complex. Controlled expression of AgrA versus RNAIII in agr mutants of all 3 psm-mec-positive SCCmec types demonstrated that expression of psm-mec, which is highly variable, is controlled by AgrA in an RNAIII-independent manner. Furthermore, psm-mec isogenic deletion mutants showed only minor changes in PSMα peptide production and unchanged (or, as previously described, diminished) virulence compared to the corresponding wild-type strains in a mouse model of skin infection. This indicates that the recently reported regulatory impact of the psm-mec locus on MRSA virulence, which is opposite to that of the PSM-mec peptide and likely mediated by a regulatory RNA, is minor when analyzed in the original strain background. Our study gives new insight in the distribution, regulation, and role in virulence of the PSM-mec peptide and the psm-mec gene locus
An Invertebrate Hyperglycemic Model for the Identification of Anti-Diabetic Drugs
The number of individuals diagnosed with type 2 diabetes mellitus, which is caused by insulin resistance and/or abnormal insulin secretion, is increasing worldwide, creating a strong demand for the development of more effective anti-diabetic drugs. However, animal-based screening for anti-diabetic compounds requires sacrifice of a large number of diabetic animals, which presents issues in terms of animal welfare. Here, we established a method for evaluating the anti-diabetic effects of compounds using an invertebrate animal, the silkworm, Bombyx mori. Sugar levels in silkworm hemolymph increased immediately after feeding silkworms a high glucose-containing diet, resulting in impaired growth. Human insulin and 5-aminoimidazole-4-carboxamide-1-β-D-ribofuranoside (AICAR), an AMP-activated protein kinase (AMPK) activator, decreased the hemolymph sugar levels of the hyperglycemic silkworms and restored growth. Treatment of the isolated fat body with human insulin in an in vitro culture system increased total sugar in the fat body and stimulated Akt phosphorylation. These responses were inhibited by wortmannin, an inhibitor of phosphoinositide 3 kinase. Moreover, AICAR stimulated AMPK phosphorylation in the silkworm fat body. Administration of aminoguanidine, a Maillard reaction inhibitor, repressed the accumulation of Maillard reaction products (advanced glycation end-products; AGEs) in the hyperglycemic silkworms and restored growth, suggesting that the growth defect of hyperglycemic silkworms is caused by AGE accumulation in the hemolymph. Furthermore, we identified galactose as a hypoglycemic compound in jiou, an herbal medicine for diabetes, by monitoring its hypoglycemic activity in hyperglycemic silkworms. These results suggest that the hyperglycemic silkworm model is useful for identifying anti-diabetic drugs that show therapeutic effects in mammals
Transcription and Translation Products of the Cytolysin Gene psm-mec on the Mobile Genetic Element SCCmec Regulate Staphylococcus aureus Virulence
The F region downstream of the mecI gene in the SCCmec element in hospital-associated methicillin-resistant Staphylococcus aureus (HA-MRSA) contains two bidirectionally overlapping open reading frames (ORFs), the fudoh ORF and the psm-mec ORF. The psm-mec ORF encodes a cytolysin, phenol-soluble modulin (PSM)-mec. Transformation of the F region into the Newman strain, which is a methicillin-sensitive S. aureus (MSSA) strain, or into the MW2 (USA400) and FRP3757 (USA300) strains, which are community-acquired MRSA (CA-MRSA) strains that lack the F region, attenuated their virulence in a mouse systemic infection model. Introducing the F region to these strains suppressed colony-spreading activity and PSMα production, and promoted biofilm formation. By producing mutations into the psm-mec ORF, we revealed that (i) both the transcription and translation products of the psm-mec ORF suppressed colony-spreading activity and promoted biofilm formation; and (ii) the transcription product of the psm-mec ORF, but not its translation product, decreased PSMα production. These findings suggest that both the psm-mec transcript, acting as a regulatory RNA, and the PSM-mec protein encoded by the gene on the mobile genetic element SCCmec regulate the virulence of Staphylococcus aureus
- …