5 research outputs found
Surface-mediated attraction between colloids
We investigate the equilibrium properties of a colloidal solution in contact
with a soft interface. As a result of symmetry breaking, surface effects are
generally prevailing in confined colloidal systems. In this Letter, particular
emphasis is given to surface fluctuations and their consequences on the local
(re)organization of the suspension. It is shown that particles experience a
significant effective interaction in the vicinity of the interface. This
potential of mean force is always attractive, with range controlled by the
surface correlation length. We suggest that, under some circumstances,
surface-induced attraction may have a strong influence on the local particle
distribution
Statistical mechanics of a colloidal suspension in contact with a fluctuating membrane
Surface effects are generally prevailing in confined colloidal systems. Here
we report on dispersed nanoparticles close to a fluid membrane. Exact results
regarding the static organization are derived for a dilute solution of
non-adhesive colloids. It is shown that thermal fluctuations of the membrane
broaden the density profile, but on average colloids are neither accumulated
nor depleted near the surface. The radial correlation function is also
evaluated, from which we obtain the effective pair-potential between colloids.
This entropically-driven interaction shares many similarities with the familiar
depletion interaction. It is shown to be always attractive with range
controlled by the membrane correlation length. The depth of the potential well
is comparable to the thermal energy, but depends only indirectly upon membrane
rigidity. Consequenses for stability of the suspension are also discussed