1,097,127 research outputs found
Four-atom period in the conductance of monatomic Al wires
We present first principles calculations based on density functional theory
for the conductance of monatomic Al wires between Al(111) electrodes. In
contrast to the even-odd oscillations observed in other metallic wires, the
conductance of the Al wires is found to oscillate with a period of 4 atoms as
the length of the wire is varied. Although local charge neutrality can account
for the observed period it leads to an incorrect phase. We explain the
conductance behavior using a resonant transport model based on the electronic
structure of the infinite wire.Comment: 4 pages, 5 figure
Interference and k-point sampling in the supercell approach to phase-coherent transport
We present a systematic study of interference and k-point sampling effects in
the supercell approach to phase-coherent electron transport. We use a
representative tight-binding model to show that interference between the
repeated images is a small effect compared to the error introduced by using
only the Gamma-point for a supercell containing (3,3) sites in the transverse
plane. An insufficient k-point sampling can introduce strong but unphysical
features in the transmission function which can be traced to the presence of
van Hove singularities in the lead. We present a first-principles calculation
of the transmission through a Pt contact which shows that the k-point sampling
is also important for realistic systems.Comment: 4 pages, 5 figures. Accepted for Phys. Rev. B (Brief Report
Conduction Mechanism in a Molecular Hydrogen Contact
We present first principles calculations for the conductance of a hydrogen
molecule bridging a pair of Pt electrodes. The transmission function has a wide
plateau with T~1 which extends across the Fermi level and indicates the
existence of a single, robust conductance channel with nearly perfect
transmission. Through a detailed Wannier function analysis we show that the H2
bonding state is not involved in the transport and that the plateau forms due
to strong hybridization between the H2 anti-bonding state and states on the
adjacent Pt atoms. The Wannier functions furthermore allow us to derive a
resonant-level model for the system with all parameters determined from the
fully self-consistent Kohn-Sham Hamiltonian.Comment: 5 pages, 4 figure
Renormalization group approach to spinor Bose-Fermi mixtures in a shallow optical lattice
We study a mixture of ultracold spin-half fermionic and spin-one bosonic
atoms in a shallow optical lattice where the bosons are coupled to the fermions
via both density-density and spin-spin interactions. We consider the parameter
regime where the bosons are in a superfluid ground state, integrate them out,
and obtain an effective action for the fermions. We carry out a renormalization
group analysis of this effective fermionic action at low temperatures, show
that the presence of the spinor bosons may lead to a separation of Fermi
surfaces of the spin-up and spin-down fermions, and investigate the parameter
range where this phenomenon occurs. We also calculate the susceptibilities
corresponding to the possible superfluid instabilities of the fermions and
obtain their possible broken-symmetry ground states at low temperatures and
weak interactions.Comment: 8 pages, 8 figs v
- …