26,307 research outputs found
Phase Transitions in the NMSSM
We study phase transitions in the Next-to-Minimal Supersymmetric Standard
Model (NMSSM) with the weak scale vacuum expectation values of the singlet
scalar, constrained by Higgs spectrum and vacuum stability. We find four
different types of phase transitions, three of which have two-stage nature. In
particular, one of the two-stage transitions admits strongly first order
electroweak phase transition, even with heavy squarks. We introduce a
tree-level explicit CP violation in the Higgs sector, which does not affect the
neutron electric dipole moment. In contrast to the MSSM with the CP violation
in the squark sector, a strongly first order phase transition is not so
weakened by this CP violation.Comment: 21 pages, 8 figure
CP Violation in the Higgs Sector and Phase Transition in the MSSM
We investigate the electroweak phase transition in the presence of a large CP
violation in the squark sector of the MSSM. When the CP violation is large,
scalar-pseudoscalar mixing of the Higgs bosons occurs and a large CP violation
in the Higgs sector is induced. It, however, weakens first-order phase
transition before the mixing reaches the maximal. Even when the CP violation in
the squark sector is not so large that the phase transition is strongly first
order, the phase difference between the broken and symmetric phase regions
grows to O(1), which leads to successful baryogenesis, when the charged Higgs
bosons is light.Comment: 18 pages, 6 figures, LaTeX2
Zero-shot keyword spotting for visual speech recognition in-the-wild
Visual keyword spotting (KWS) is the problem of estimating whether a text
query occurs in a given recording using only video information. This paper
focuses on visual KWS for words unseen during training, a real-world, practical
setting which so far has received no attention by the community. To this end,
we devise an end-to-end architecture comprising (a) a state-of-the-art visual
feature extractor based on spatiotemporal Residual Networks, (b) a
grapheme-to-phoneme model based on sequence-to-sequence neural networks, and
(c) a stack of recurrent neural networks which learn how to correlate visual
features with the keyword representation. Different to prior works on KWS,
which try to learn word representations merely from sequences of graphemes
(i.e. letters), we propose the use of a grapheme-to-phoneme encoder-decoder
model which learns how to map words to their pronunciation. We demonstrate that
our system obtains very promising visual-only KWS results on the challenging
LRS2 database, for keywords unseen during training. We also show that our
system outperforms a baseline which addresses KWS via automatic speech
recognition (ASR), while it drastically improves over other recently proposed
ASR-free KWS methods.Comment: Accepted at ECCV-201
Quantum model for magnetic multivalued recording in coupled multilayers
In this paper, we discuss the possibilities of realizing the magnetic
multi-valued (MMV) recording in a magnetic coupled multilayer. The hysteresis
loop of a double-layer system is studied analytically, and the conditions for
achieving the MMV recording are given. The conditions are studied from
different respects, and the phase diagrams for the anisotropic parameters are
given in the end.Comment: 8 pages, LaTex formatted, 7 figures (those who are interested please
contact the authors requring the figures) Submitted to Physal Review B.
Email: [email protected]
Cluster size dependence of high-order harmonic generation
We investigate high-order harmonic generation (HHG) from noble gas clusters
in a supersonic gas jet. To identify the contribution of harmonic generation
from clusters versus that from gas monomers, we measure the high-order harmonic
output over a broad range of the total atomic number density in the jet (from
3*10^16 cm^{-3} to 3x10^18 cm{-3}) at two different reservoir temperatures (303
K and 363 K). For the firrst time in the evaluation of the harmonic yield in
such measurements, the variation of the liquid mass fraction, g, versus
pressure and temperature is taken into consideration, which we determine,
reliably and consistently, to be below 20% within our range of experimental
parameters. By comparing the measured harmonic yield from a thin jet with the
calculated corresponding yield from monomers alone, we find an increased
emission of the harmonics when the average cluster size is less than 3000.
Using g, under the assumption that the emission from monomers and clusters add
up coherently, we calculate the ratio of the average single-atom response of an
atom within a cluster to that of a monomer and find an enhancement of around 10
for very small average cluster size (~200). We do not find any dependence of
the cut-off frequency on the composition of the cluster jet. This implies that
HHG in clusters is based on electrons that return to their parent ions and not
to neighbouring ions in the cluster. To fully employ the enhanced average
single-atom response found for small average cluster sizes (~200), the nozzle
producing the cluster jet must provide a large liquid mass fraction at these
small cluster sizes for increasing the harmonic yield. Moreover, cluster jets
may allow for quasi-phase matching, as the higher mass of clusters allows for a
higher density contrast in spatially structuring the nonlinear medium.Comment: 16 pages, 6 figure
Retention of dye tracer in side basins exchanging with subcritical and supercritical flows
River engineeringTransport and fate of pollutants in river
Spectral Retrieval of Latent Heating Profiles from TRMM PR data
The global hydrological cycle is central to the Earth's climate system, with rainfall and the physics of precipitation formation acting as the key links in the cycle. Two-thirds of global rainfall occurs in the tropics with the associated latent heating (LH) accounting for threefourths of the total heat energy available to the Earth's atmosphere. In the last decade, it has been established that standard products of LH from satellite measurements, particularly TRMM measurements, would be a valuable resource for scientific research and applications. Such products would enable new insights and investigations concerning the complexities of convection system life cycles, the diabatic heating controls and feedbacks related to rne-sosynoptic circulations and their forecasting, the relationship of tropical patterns of LH to the global circulation and climate, and strategies for improving cloud parameterizations In environmental prediction models. However, the LH and water vapor profile or budget (called the apparent moisture sink, or Q2) is closely related. This paper presented the development of an algorithm for retrieving Q2 using 'TRMM precipitation radar. Since there is no direct measurement of LH and Q2, the validation of algorithm usually applies a method called consistency check. Consistency checking involving Cloud Resolving Model (CRM)-generated LH and 42 profiles and algorithm-reconstructed is a useful step in evaluating the performance of a given algorithm. In this process, the CRM simulation of a time-dependent precipitation process (multiple-day time series) is used to obtain the required input parameters for a given algorithm. The algorithm is then used to "~econsti-LKt~h"e heating and moisture profiles that the CRM simulation originally produced, and finally both sets of conformal estimates (model and algorithm) are compared each other. The results indicate that discrepancies between the reconstructed and CM-simulated profiles for Q2, especially at low levels, are larger than those for latent heat. Larger discrepancies in Q2 at low levels are due to moistening for non-precipitating region that algorithm cannot reconstruct. Nevertheless, the algorithm-reconstructed total Q2 profiles are in good agreement with the CRM-simulated ones
Small ball probability, Inverse theorems, and applications
Let be a real random variable with mean zero and variance one and
be a multi-set in . The random sum
where are iid copies of
is of fundamental importance in probability and its applications.
We discuss the small ball problem, the aim of which is to estimate the
maximum probability that belongs to a ball with given small radius,
following the discovery made by Littlewood-Offord and Erdos almost 70 years
ago. We will mainly focus on recent developments that characterize the
structure of those sets where the small ball probability is relatively
large. Applications of these results include full solutions or significant
progresses of many open problems in different areas.Comment: 47 page
- …