3,644 research outputs found

    Small Quadrupole Deformation for the Dipole Bands in 112In

    Full text link
    High spin states in 112^{112}In were investigated using 100^{100}Mo(16^{16}O, p3n) reaction at 80 MeV. The excited level have been observed up to 5.6 MeV excitation energy and spin \sim 20\hbar with the level scheme showing three dipole bands. The polarization and lifetime measurements were carried out for the dipole bands. Tilted axis cranking model calculations were performed for different quasi-particle configurations of this doubly odd nucleus. Comparison of the calculations of the model with the B(M1) transition strengths of the positive and negative parity bands firmly established their configurations.Comment: 10 pages, 11 figures, 2 table

    Onset of deformation at N=112N = 112 in Bi nuclei

    Full text link
    The high spin states in 195^{195}Bi has been studied by γ\gamma-ray spectroscopic method using the 181^{181}Ta(20^{20}Ne, 6n) fusion evaporation reaction at 130 MeV. The γγ\gamma\gamma coincidence data were taken using an array of 8 clover HPGe detectors. The spin and parity assignments of the excited states have been made from the measured directional correlation from oriented states (DCO) ratios and integrated polarization asymmetry (IPDCO) ratios. The results show, for the first time, the evidence of a rotational like band based on a 13/2+^+ band head in this nucleus, indicating the onset of deformation at neutron number N=112N = 112 for the Bismuth isotopes. The results obtained were found to be consistent with the prediction of the total Routhian surface calculations using Woods Saxon potential. The same calculations also predict a change in shape from oblate to triaxial in 195^{195}Bi at high rotational frequency

    Shell model study of the pairing correlations

    Full text link
    A systematic study of the pairing correlations as a function of temperature and angular momentum has been performed in the sd-shell region using the spherical shell model approach. The pairing correlations have been derived for even-even, even-odd and odd-odd systems near N=Z and also for the asymmetric case of N=Z+4. The results indicate that the pairing content and the behavior of pair correlations is similar in even-even and odd-mass nuclei. For odd-odd N=Z system, angular momentum I=0 state is an isospin, t=1 neutron-proton paired configuration. Further, these t=1 correlations are shown to be dramatically reduced for the asymmetric case of N=Z+4. The shell model results obtained are qualitatively explained within a simplified degenerate model

    Re-entrant spin glass and magnetoresistance in Co_{0.2}Zn_{0.8}Fe_{1.6}Ti_{0.4}O_4 spinel oxide

    Full text link
    We have investigated the static and dynamic response of magnetic clusters in Co_{0.2}Zn_{0.8}Fe_{1.6}Ti_{0.4}O_4 spinel oxide, where a sequence of magnetic phase transitions, i.e., paramagnetic (PM) to ferromagnetic at T_{C} \leq 270K and ferromagnetic to canted spin glass state at T_f \leq$ 125K is observed
    corecore