788 research outputs found

    Snow water equivalent modeling components in NewAge-JGrass

    Get PDF
    This paper presents a package of modified temperature-index-based snow water equivalent models as part of the hydrological modeling system NewAge-JGrass. Three temperature-based snow models are integrated into the NewAge-JGrass modeling system and use many of its components such as those for radiation balance (short wave radiation balance, SWRB), kriging (KRIGING), automatic calibration algorithms (particle swarm optimization) and tests of goodness of fit (NewAge-V), to build suitable modeling solutions (MS). Similarly to all the NewAge-JGrass components, the models can be executed both in raster and in vector mode. The simulation time step can be daily, hourly or sub-hourly, depending on user needs and availability of input data. The MS are applied on the Cache la Poudre River basin (CO, USA) using three test applications. First, daily snow water equivalent is simulated for three different measurement stations for two snow model formulations. Second, hourly snow water equivalent is simulated using all the three different snow model formulae. Finally, a raster mode application is performed to compute snow water equivalent maps for the whole Cache la Poudre Basin

    Shadow features and shadow bands in the paramagnetic state of cuprate superconductors

    Full text link
    The conditions for the precursors of antiferromagnetic bands in cuprate superconductors are studied using weak-to-intermediate coupling approach. It is shown that there are, in fact, three different precursor effects due to the proximity to antiferromagnetic instability: i) the shadow band which associated with new pole in the Green's function ii) the dispersive shadow feature due to the thermal enhancement of the scattering rate and iii) the non-dispersive shadow feature due to quantum spin fluctuation that exist only in k\vec{k}-scan of the spectral function A(ωFixed,k)A(\omega _{Fixed},\vec{k}). I found that dispersive shadow peaks in A(ω,k)A(\omega,\vec{k}) can exist at finite temperature T in the renormalized classical regime, when TωsfT\gg \omega _{sf}, ξAFM>ξth=vF/T\xi_{AFM} >\xi_{th}=v_F/T (ωsf\omega _{sf} is the characteristic energy of spin fluctuations, ξth\xi_{th} is the thermal wave length of electron). In contrast at zero temperature, only non-dispersive shadow feature in A(ωFixed,k)% A(\omega_{Fixed},\vec{k}) has been found. I found, however, that the latter effect is always very small. The theory predict no shadow effects in the optimally doped materials. The conditions for which shadow peaks can be observed in photoemission are discussed.Comment: 6 pages, REVTEX, 2 ps figures, version to be published in PR

    On different lagrangian formalisms for vector resonances within chiral perturbation theory

    Get PDF
    We study the relation of vector Proca field formalism and antisymmetric tensor field formalism for spin-one resonances in the context of the large N_C inspired chiral resonance Lagrangian systematically up to the order O(p6) and give a transparent prescription for the transition from vector to antisymmetric tensor Lagrangian and vice versa. We also discuss the possibility to describe the spin-one resonances using an alternative "mixed" first order formalism, which includes both types of fields simultaneously, and compare this one with the former two. We also briefly comment on the compatibility of the above lagrangian formalisms with the high-energy constraints for concrete VVP correlator.Comment: 34 pages, 3 figure

    Remnant Fermi Surfaces in Photoemission

    Full text link
    Recent experiments have introduced a new concept for analyzing the photoemission spectra of correlated electrons -- the remnant Fermi surface (rFs), which can be measured even in systems which lack a conventional Fermi surface. Here, we analyze the rFs in a number of interacting electron models, and find that the results fall into two classes. For systems with pairing instabilities, the rFs is an accurate replica of the true Fermi surface. In the presence of nesting instabilities, the rFs is a map of the resulting superlattice Brillouin zone. The results suggest that the gap in Ca_2CuO_2Cl_2 is of nesting origin.Comment: 4 pages LaTex, 3 ps figure

    A momentum-dependent perspective on quasiparticle interference in Bi_{2}Sr_{2}CaCu_{2}O_{8+\delta}

    Full text link
    Angle Resolved Photoemission Spectroscopy (ARPES) probes the momentum-space electronic structure of materials, and provides invaluable information about the high-temperature superconducting cuprates. Likewise, the cuprate real-space, inhomogeneous electronic structure is elucidated by Scanning Tunneling Spectroscopy (STS). Recently, STS has exploited quasiparticle interference (QPI) - wave-like electrons scattering off impurities to produce periodic interference patterns - to infer properties of the QP in momentum-space. Surprisingly, some interference peaks in Bi_{2}Sr_{2}CaCu_{2}O_{8+\delta} (Bi-2212) are absent beyond the antiferromagnetic (AF) zone boundary, implying the dominance of particular scattering process. Here, we show that ARPES sees no evidence of quasiparticle (QP) extinction: QP-like peaks are measured everywhere on the Fermi surface, evolving smoothly across the AF zone boundary. This apparent contradiction stems from different natures of single-particle (ARPES) and two-particle (STS) processes underlying these probes. Using a simple model, we demonstrate extinction of QPI without implying the loss of QP beyond the AF zone boundary

    Theory for the excitation spectrum of High-T$_c superconductors : quasiparticle dispersion and shadows of the Fermi surface

    Full text link
    Using a new method for the solution of the FLEX-equations, which allows the determination of the self energy Σk(ω)\Sigma_{\bf k}(\omega) of the 2D2D Hubbard model on the real frequency axis, we calculate the doping dependence of the quasi-particle excitations of High-Tc_c superconductors. We obtain new results for the shadows of the Fermi surface, their dependence on the deformation of the quasi particle dispersion, an anomalous ω\omega-dependence of ImΣk(ω){\rm Im}\Sigma_{\bf k}(\omega) and a related violation of the Luttinger theorem. This sheds new light on the influence of short range magnetic order on the low energy excitations and its significance for photoemission experiments.Comment: 4 pages (REVTeX) with 3 figure

    Magnetoresistance in Heavily Underdoped YBa_2Cu_3O_{6+x}: Antiferromagnetic Correlations and Normal-State Transport

    Full text link
    We report on a contrasting behavior of the in-plane and out-of-plane magnetoresistance (MR) in heavily underdoped antiferromagnetic (AF) YBa_2Cu_3O_{6+x} (x<0.37). The out-of-plane MR (I//c) is positive over most of the temperature range and shows a sharp increase, by about two orders of magnitude, upon cooling through the Neel temperature T_N. A contribution associated with the AF correlations is found to dominate the out-of-plane MR behavior for H//c from far above T_N, pointing to the key role of spin fluctuations in the out-of-plane transport. In contrast, the transverse in-plane MR (I//a(b);H//c) appears to be small and smooth through T_N, implying that the development of the AF order has little effect on the in-plane resistivity.Comment: 4 pages, 5 figures, accepted for publication in Phys.Rev.Let

    Fluctuation Conductivity in Insulator-Superconductor Transitions with Dissipation

    Full text link
    We analyze here the fluctuation conductivity in the vicinity of the critical point in a 2D Josephson junction array shunted by an Ohmic resistor.We find that at the Gaussian level, the conductivity acquires a logarithmic dependence on T/(TTc)T/(T-T_c) when the dissipation is sufficiently small. In the renormalized classical regime, this logarithmic dependence gives rise to a leveling-off of the resistivity at low to intermediate temperatures when fluctuations are included. We show, however, that this trend does not persist to T=0 at which point the resistivity vanishes. The possible relationship of the leveling of the resistivity to the low temperature transport in granlar superconductors is discussed.Comment: 4 page

    Pairing Correlations in the Two-Dimensional Hubbard Model

    Full text link
    We present the results of a quantum Monte Carlo study of the extended ss and the dx2y2d_{x^2-y^2} pairing correlation functions for the two-dimensional Hubbard model, computed with the constrained-path method. For small lattice sizes and weak interactions, we find that the dx2y2d_{x^2-y^2} pairing correlations are stronger than the extended ss pairing correlations and are positive when the pair separation exceeds several lattice constants. As the system size or the interaction strength increases, the magnitude of the long-range part of both correlation functions vanishes.Comment: 4 pages, RevTex, 4 figures included; submitted to Phys. Rev. Let

    QED radiative corrections to the decay pi^0 to e^+e^-

    Full text link
    We reconsider QED radiative corrections (RC) to the π0e+e\pi^{0}\to e^{+}e^{-} decay width. One kind of RC investigated earlier has a renormalization group origin and can be associated with the final state interaction of electron and positron. It determines the distribution of lepton pair invariant masses in the whole kinematic region. The other type of RC has a double-logarithmic character and is related to almost on-mass-shell behavior of the lepton form factors. The total effect of RC for the π0e+e\pi^{0}\to e^{+}e^{-} decay is estimated to be 3.2% and for the decay ηe+e\eta \to e^{+}e^{-} is 4.3%.Comment: 12 pages, 3 figure
    corecore