46,394 research outputs found

    Mass Outflow Rate From Accretion Discs around Compact Objects

    Full text link
    We compute mass outflow rates from accretion disks around compact objects, such as neutron stars and black holes. These computations are done using combinations of exact transonic inflow and outflow solutions which may or may not form standing shock waves. Assuming that the bulk of the outflow is from the effective boundary layers of these objects, we find that the ratio of the outflow rate and inflow rate varies anywhere from a few percent to even close to a hundred percent (i.e., close to disk evacuation case) depending on the initial parameters of the disk, the degree of compression of matter near the centrifugal barrier, and the polytropic index of the flow. Our result, in general, matches with the outflow rates obtained through a fully time-dependent numerical simulation. In some region of the parameter space when the standing shock does not form, our results indicate that the disk may be evacuated and may produce quiescence states.Comment: 30 Latex pages and 13 figures. crckapb.sty; Published in Class. Quantum Grav. Vol. 16. No. 12. Pg. 387

    Competition of L21 and XA Ordering in Fe2CoAl Heusler Alloy: A First-Principles Study

    Full text link
    The physical properties of Fe2CoAl (FCA) Heusler alloy are systematically investigated using the first-principles calculations within generalized gradient approximation (GGA) and GGA+U. The influence of atomic ordering with respect to the Wyckoff sites on the phase stability, magnetism and half metallicity in both the conventional L21 and XA phases of FCA is focused in this study. Various possible hypothetical structures viz., L21, XA-I, and XA-II are prepared by altering atomic occupancies at their Wyckoff sites. At first, we have determined the stable phase of FCA considering various non-magnetic (or paramagnetic), ferromagnetic (FM) and antiferromagnetic (AFM) configurations. Out of these, the ferromagnetic (FM) XA-I structure is found to be energetically most stable. The total magnetic moments per cell are not in agreement with the Slater-Pauling (SP) rule in any phases; therefore, the half-metallicity is not observed in any configurations. However, FM ordered XA-I type FCA shows 78% spin polarization at EF. Interestingly, the results of XA-I type FCA are closely matched with the experimental results.Comment: 15 pages, 6 figure

    Transport properties of diluted magnetic semiconductors: Dynamical mean field theory and Boltzmann theory

    Full text link
    The transport properties of diluted magnetic semiconductors (DMS) are calculated using dynamical mean field theory (DMFT) and Boltzmann transport theory. Within DMFT we study the density of states and the dc-resistivity, which are strongly parameter dependent such as temperature, doping, density of the carriers, and the strength of the carrier-local impurity spin exchange coupling. Characteristic qualitative features are found distinguishing weak, intermediate, and strong carrier-spin coupling and allowing quantitative determination of important parameters defining the underlying ferromagnetic mechanism. We find that spin-disorder scattering, formation of bound state, and the population of the minority spin band are all operational in DMFT in different parameter range. We also develop a complementary Boltzmann transport theory for scattering by screened ionized impurities. The difference in the screening properties between paramagnetic (T>TcT>T_c) and ferromagnetic (T<TcT<T_c) states gives rise to the temperature dependence (increase or decrease) of resistivity, depending on the carrier density, as the system goes from the paramagnetic phase to the ferromagnetic phase. The metallic behavior below TcT_c for optimally doped DMS samples can be explained in the Boltzmann theory by temperature dependent screening and thermal change of carrier spin polarization.Comment: 15 pages, 15 figure
    • …
    corecore