3,889 research outputs found

    Dicke model and environment-induced entanglement in ion-cavity QED

    Get PDF
    We investigate realistic experimental conditions under which the collective Dicke model can be implemented in ion-cavity QED context. We show how ideal subradiance and superradiance can be observed and we propose an experiment to generate entanglement exploiting the existence of the subradiant state. We explore the conditions to achieve optimal entanglement generation and we show that they are reachable with current experimental technology.Comment: 17 pages, 11 figures. V2: published version, one reference added, typos correcte

    Raman-assisted Rabi resonances in two-mode cavity QED

    Full text link
    The dynamics of a vibronic system in a lossy two-mode cavity is studied, with the first mode being resonant to the electronic transition and the second one being nearly resonant due to Raman transitions. We derive analytical solutions for the dynamics of this system. For a properly chosen detuning of the second mode from the exact Raman resonance, we obtain conditions that are closely related to the phenomenon of Rabi resonance as it is well known in laser physics. Such resonances can be observed in the spontaneous emission spectra, where the spectrum of the second mode in the case of weak Raman coupling is enhanced substantially.Comment: 6 pages, 5 figure

    Measurement-induced entanglement of two superconducting qubits

    Full text link
    We study the problem of two superconducting quantum qubits coupled via a resonator. If only one quanta is present in the system and the number of photons in the resonator is measured with a null result, the qubits end up in an entangled Bell state. Here we look at one source of errors in this quantum nondemolition scheme due to the presence of more than one quanta in the resonator, previous to the measurement. By analyzing the structure of the conditional Hamiltonian with arbitrary number of quanta, we show that the scheme is remarkably robust against these type of errors.Comment: 4 pages, 2 figure

    Dissipation-driven quantum phase transitions in collective spin systems

    Full text link
    We consider two different collective spin systems subjected to strong dissipation -- on the same scale as interaction strengths and external fields -- and show that either continuous or discontinuous dissipative quantum phase transitions can occur as the dissipation strength is varied. First, we consider a well known model of cooperative resonance fluorescence that can exhibit a second-order quantum phase transition, and analyze the entanglement properties near the critical point. Next, we examine a dissipative version of the Lipkin-Meshkov-Glick interacting collective spin model, where we find that either first- or second-order quantum phase transitions can occur, depending only on the ratio of the interaction and external field parameters. We give detailed results and interpretation for the steady state entanglement in the vicinity of the critical point, where it reaches a maximum. For the first-order transition we find that the semiclassical steady states exhibit a region of bistability.Comment: 12 pages, 16 figures, removed section on homodyne spectr

    Decoherence of a two-state atom driven by coherent light

    Full text link
    Recent studies of the decoherence induced by the quantum nature of the laser field driving a two-state atom [J. Gea-Banacloche, Phys. Rev. A 65, 022308 (2002); S. J. van Enk and H. J. Kimble, Quantum Inf. and Comp. 2, 1 (2002)] have been questioned by Itano [W. M. Itano, Phys. Rev. A 68, 046301 (2003)] and the proposal made that all decoherence is due to spontaneous emission. We analyze the problem within the formalism of cascaded open quantum systems. Our conclusions agree with the Itano proposal. We show that the decoherence, nevertheless, may be divided into two parts--that due to forwards scattering and to scattering out of the laser mode. Previous authors attribute the former to the quantum nature of the laser field.Comment: 6 pages, 2 figures, to appear in Phys. Rev.

    Collective spin systems in dispersive optical cavity QED: Quantum phase transitions and entanglement

    Full text link
    We propose a cavity QED setup which implements a dissipative Lipkin-Meshkov-Glick model -- an interacting collective spin system. By varying the external model parameters the system can be made to undergo both first-and second-order quantum phase transitions, which are signified by dramatic changes in cavity output field properties, such as the probe laser transmission spectrum. The steady-state entanglement between pairs of atoms is shown to peak at the critical points and can be experimentally determined by suitable measurements on the cavity output field. The entanglement dynamics also exhibits pronounced variations in the vicinities of the phase transitions.Comment: 19 pages, 18 figures, shortened versio

    Simultaneous intracranial EEG and fMRI of interictal epileptic discharges in humans

    Get PDF
    Simultaneous scalp EEG–fMRI measurements allow the study of epileptic networks and more generally, of the coupling between neuronal activity and haemodynamic changes in the brain. Intracranial EEG (icEEG) has greater sensitivity and spatial specificity than scalp EEG but limited spatial sampling. We performed simultaneous icEEG and functional MRI recordings in epileptic patients to study the haemodynamic correlates of intracranial interictal epileptic discharges (IED). Two patients undergoing icEEG with subdural and depth electrodes as part of the presurgical assessment of their pharmaco-resistant epilepsy participated in the study. They were scanned on a 1.5 T MR scanner following a strict safety protocol. Simultaneous recordings of fMRI and icEEG were obtained at rest. IED were subsequently visually identified on icEEG and their fMRI correlates were mapped using a general linear model (GLM). On scalp EEG–fMRI recordings performed prior to the implantation, no IED were detected. icEEG–fMRI was well tolerated and no adverse health effect was observed. intra-MR icEEG was comparable to that obtained outside the scanner. In both cases, significant haemodynamic changes were revealed in relation to IED, both close to the most active electrode contacts and at distant sites. In one case, results showed an epileptic network including regions that could not be sampled by icEEG, in agreement with findings from magneto-encephalography, offering some explanation for the persistence of seizures after surgery. Hence, icEEG–fMRI allows the study of whole-brain human epileptic networks with unprecedented sensitivity and specificity. This could help improve our understanding of epileptic networks with possible implications for epilepsy surgery

    Open system dynamics with non-Markovian quantum jumps

    Get PDF
    We discuss in detail how non-Markovian open system dynamics can be described in terms of quantum jumps [J. Piilo et al., Phys. Rev. Lett. 100, 180402 (2008)]. Our results demonstrate that it is possible to have a jump description contained in the physical Hilbert space of the reduced system. The developed non-Markovian quantum jump (NMQJ) approach is a generalization of the Markovian Monte Carlo Wave Function (MCWF) method into the non-Markovian regime. The method conserves both the probabilities in the density matrix and the norms of the state vectors exactly, and sheds new light on non-Markovian dynamics. The dynamics of the pure state ensemble illustrates how local-in-time master equation can describe memory effects and how the current state of the system carries information on its earlier state. Our approach solves the problem of negative jump probabilities of the Markovian MCWF method in the non-Markovian regime by defining the corresponding jump process with positive probability. The results demonstrate that in the theoretical description of non-Markovian open systems, there occurs quantum jumps which recreate seemingly lost superpositions due to the memory.Comment: 19 pages, 10 figures. V2: Published version. Discussion section shortened and some other minor changes according to the referee's suggestion

    Nonlinear photoluminescence spectra from a quantum dot-cavity system: Direct evidence of pump-induced stimulated emission and anharmonic cavity-QED

    Full text link
    We investigate the power-dependent photoluminescence spectra from a strongly coupled quantum dot-cavity system using a quantum master equation technique that accounts for incoherent pumping, pure dephasing, and fermion or boson statistics. Analytical spectra at the one-photon correlation level and the numerically exact multi-photon spectra for fermions are presented. We compare to recent experiments on a quantum dot-micropiller cavity system and show that an excellent fit to the data can be obtained by varying only the incoherent pump rates in direct correspondence with the experiments. Our theory and experiments together show a clear and systematic way of studying stimulated-emission induced broadening and anharmonic cavity-QED.Comment: We have reworked our previous arXiv paper and submitted this latest version for peer revie
    • …
    corecore