273 research outputs found

    A Pixel Vertex Tracker for the TESLA Detector

    Get PDF
    In order to fully exploit the physics potential of a e+e- linear collider, such as TESLA, a Vertex Tracker providing high resolution track reconstruction is required. Hybrid Silicon pixel sensors are an attractive sensor technology option due to their read-out speed and radiation hardness, favoured in the high rate TESLA environment, but have been so far limited by the achievable single point space resolution. A novel layout of pixel detectors with interleaved cells to improve their spatial resolution is introduced and the results of the characterisation of a first set of test structures are discussed. In this note, a conceptual design of the TESLA Vertex Tracker, based on hybrid pixel sensors is presentedComment: 20 pages, 11 figure

    Quantization of the Chern-Simons Coupling Constant

    Get PDF
    We investigate the quantum consistency of p-form Maxwell-Chern-Simons electrodynamics in 3p+2 spacetime dimensions (for p odd). These are the dimensions where the Chern--Simons term is cubic, i.e., of the form FFA. For the theory to be consistent at the quantum level in the presence of magnetic and electric sources, we find that the Chern--Simons coupling constant must be quantized. We compare our results with the bosonic sector of eleven dimensional supergravity and find that the Chern--Simons coupling constant in that case takes its corresponding minimal allowed value.Comment: 15 pages, 1 figure, JHEP3.cls. Equation (8.6) corrected and perfect agreement with previous results is obtaine

    Low-energy interaction of composite spin-half systems with scalar and vector fields

    Get PDF
    We consider a composite spin-half particle moving in spatially-varying scalar and vector fields. The vector field is assumed to couple to a conserved charge, but no assumption is made about either the structure of the composite or its coupling to the scalar field. A general form for the piece of the spin-orbit interaction of the composite with the scalar and vector fields which is first-order in momentum transfer Q{\bf Q} and second-order in the fields is derived.Comment: 10 pages, RevTe

    Smooth Paths on Three Dimensional Lattice

    Get PDF
    A particular class of random walks with a spin factor on a three dimensional cubic lattice is studied. This three dimensional random walk model is a simple generalization of random walk for the two dimensional Ising model. All critical diffusion constants and associated critical exponents are calculated. Continuum field theories such as Klein-Gordon, Dirac and massive Chern-Simons theories are constructed near several critical points.Comment: 7 pages,NUP-A-94-

    Chiral non-linear sigma-models as models for topological superconductivity

    Full text link
    We study the mechanism of topological superconductivity in a hierarchical chain of chiral non-linear sigma-models (models of current algebra) in one, two, and three spatial dimensions. The models have roots in the 1D Peierls-Frohlich model and illustrate how the 1D Frohlich's ideal conductivity extends to a genuine superconductivity in dimensions higher than one. The mechanism is based on the fact that a point-like topological soliton carries an electric charge. We discuss a flux quantization mechanism and show that it is essentially a generalization of the persistent current phenomenon, known in quantum wires. We also discuss why the superconducting state is stable in the presence of a weak disorder.Comment: 5 pages, revtex, no figure

    Observations of mineralised tissues of teeth in X-ray micro-computed tomography

    Get PDF
    Background: The one of the most recent imaging technology is X-ray microtomography which allows non-invasive three-dimensional visualisation of structures. It also offers the opportunity to conduct a comprehensive quantitative analysis of the tested objects such as measuring the shares of the various phases, determining the material density and distribution of the size of pores and particles. The aim of the paper was to present an overview on the applicability and relevance of X-ray microtomography in the study of mineralised tissues of the teeth. Materials and methods: The article is based on the most recent and significant literature and own observations. Results: The use of X-ray microtomography in dentistry has recently increased and includes, inter alia, the assessment of the density of minerals in enamel and dentin, the detection of demineralisation in an artificially and a naturally induced caries, the automatic measurement of the depth of cavities in dentin, the measurement of the amount of removed dentin in preparation of carious lesions by various methods, the assessment of microleakage around fillings and fissure sealants, cortical bone density measurement, evaluation of root canal morphology, comparison of the accuracy of root canal working and filling by various methods. Conclusions: X-ray microtomography offers within the analysis of mineralised tissues — complex structures of bone, teeth and biomedical materials, turn out to be indispensable since it opens new opportunities for cognitive and implementation research

    A unified BFKL and GLAP description of F2F_2 data

    Full text link
    We argue that the use of the universal unintegrated gluon distribution and the kTk_T (or high energy) factorization theorem provides the natural framework for describing observables at small x. We introduce a coupled pair of evolution equations for the unintegrated gluon distribution and the sea quark distribution which incorporate both the resummed leading ln(1/x)ln (1/x) BFKL contributions and the resummed leading ln(Q2)ln (Q^2) GLAP contributions. We solve these unified equations in the perturbative QCD domain using simple parametic forms of the nonperturbative part of the integrated distributions. With only two (physically motivated) input parameters we find that this kTk_T factorization approach gives an excellent description of the measurements of F2(x,Q2)F_2 (x,Q^2) at HERA. In this way the unified evolution equations allow us to determine the gluon and sea quark distributions and, moreover, to see the x domain where the resummed ln(1/x)ln (1/x) effects become significant. We use kTk_T factorization to predict the longitudinal structure function FL(x,Q2)F_L (x,Q^2) and the charm component of F2(x,Q2)F_2 (x,Q^2).Comment: 25 pages, LaTeX, 9 figure

    NLO corrections to ultra-high energy neutrino-nucleon scattering, shadowing and small x

    Get PDF
    We reconsider the Standard Model interactions of ultra-high energy neutrinos with matter. The next to leading order QCD corrections are presented for charged-current and neutral-current processes. Contrary to popular expectations, these corrections are found to be quite substantial, especially for very large (anti-) neutrino energies. Hence, they need to be taken into account in any search for new physics effects in high-energy neutrino interactions. In our extrapolation of the parton densities to kinematical regions as yet unexplored directly in terrestrial accelerators, we are guided by double asymptotic scaling in the large Q^2 and small Bjorken x region and to models of saturation in the low Q^2 and low x regime. The sizes of the consequent uncertainties are commented upon. We also briefly discuss some variables which are insensitive to higher order QCD corrections and are hence suitable in any search for new physics.Comment: 21 pages, LaTeX2e, uses JHEP3.cls (included), 8 ps files for figures published versio
    • …
    corecore