254 research outputs found
Quick-closing valve is actuated by explosive discharge
Remotely controlled plug-type valve shuts off a high-pressure, high-temperature gas flow in a few milliseconds. The valve is actuated by a commercially available electrically initiated squib of low explosive power. More rapid closure is attainable with squibs containing heavier explosive changes
Military spending and economic growth in China: a regime-switching analysis
This article has been made available through the Brunel Open Access Publishing Fund.This article investigates the impact of military spending changes on economic growth in China over the period 1953 to 2010. Using two-state Markov-switching specifications, the results suggest that the relationship between military spending changes and economic growth is state dependent. Specifically, the results show that military spending changes affect the economic growth negatively during a slower growth-higher variance state, while positively within a faster growth-lower variance one. It is also demonstrated that military spending changes contain information about the growth transition probabilities. As a policy tool, the results indicate that increases in military spending can be detrimental to growth during slower growth-higher growth volatility periods. © 2014 © 2014 The Author(s). Published by Taylor & Francis
Recommended from our members
Low activity blankets for experimental power reactors
Results of current studies aimed at the development of low activity blankets for Tokamak experimental power reactors are presented. First wall loadings in the range of 0.5 to 1.0 MW(th)/m have been assumed. Blanket designs are developed for both circular plasma reactors (R = 6.25m, a = 2.1m) and non-circular plasma reactors (R = 4.0m, a = 1.0m, b = 3.0m). For each of these two reactor choices, two blanket options are described. 1) In the first option, the blanket is thick graphite block structure (approximately 50cm thickness) with SAP coolant tubes carrying helium imbedded deep within the graphite to minimize radiation damage. The neutron and gamma energy deposited in the graphite is radiated along internal slots to the coolant tubes where approximately 80 percent of the fusion energy is carried off by He at 380C. The remaining 20 percent of the fusion energy is removed by a separate He stream at a slightly lower temperature. The maximum graphite surface temperature is relatively low (approximately 1700C at 1 MW(th)/m2). 2) In the second blanket option, the blanket is composed of aluminum modules. The aluminum shell (5000 series alloy) is maintained at a low temperature (approximately 200C) by a water coolant stream. Approximately 40 percent of the fusion energy is removed in this circuit. The remaining 60 percent of the fusion energy is deposited in a thermally insulated hot interior (SiC and BC) where it is transferred to a separate He coolant, with exit temperature of 700C. (auth
Different reactions to adverse neighborhoods in games of cooperation
In social dilemmas, cooperation among randomly interacting individuals is
often difficult to achieve. The situation changes if interactions take place in
a network where the network structure jointly evolves with the behavioral
strategies of the interacting individuals. In particular, cooperation can be
stabilized if individuals tend to cut interaction links when facing adverse
neighborhoods. Here we consider two different types of reaction to adverse
neighborhoods, and all possible mixtures between these reactions. When faced
with a gloomy outlook, players can either choose to cut and rewire some of
their links to other individuals, or they can migrate to another location and
establish new links in the new local neighborhood. We find that in general
local rewiring is more favorable for the evolution of cooperation than
emigration from adverse neighborhoods. Rewiring helps to maintain the diversity
in the degree distribution of players and favors the spontaneous emergence of
cooperative clusters. Both properties are known to favor the evolution of
cooperation on networks. Interestingly, a mixture of migration and rewiring is
even more favorable for the evolution of cooperation than rewiring on its own.
While most models only consider a single type of reaction to adverse
neighborhoods, the coexistence of several such reactions may actually be an
optimal setting for the evolution of cooperation.Comment: 12 pages, 5 figures; accepted for publication in PLoS ON
A False Start in the Race Against Doping in Sport: Concerns With Cycling’s Biological Passport
Professional cycling has suffered from a number of doping scandals. The sport’s governing bodies have responded by implementing an aggressive new antidoping program known as the biological passport. Cycling’s biological passport marks a departure from traditional antidoping efforts, which have focused on directly detecting prohibited substances in a cyclist’s system. Instead, the biological passport tracks biological variables in a cyclist’s blood and urine over time, monitoring for fluctuations that are thought to indirectly reveal the effects of doping. Although this method of indirect detection is promising, it also raises serious legal and scientific concerns. Since its introduction, the cycling community has debated the reliability of indirect biological-passport evidence and the clarity, consistency, and transparency of its use in proving doping violations. Such uncertainty undermines the legitimacy of finding cyclists guilty of doping based on this indirect evidence alone. Antidoping authorities should address these important concerns before continuing to pursue doping sanctions against cyclists solely on the basis of their biological passports
Recommended from our members
Evaporated Lithium Surface Coatings in NSTX
Two lithium evaporators were used to evaporate more than 100 g of lithium on to the NSTX lower divertor region. Prior to each discharge, the evaporators were withdrawn behind shutters, where they also remained during the subsequent HeGDC applied for periods up to 9.5 min. After the HeGDC, the shutters were opened and the LITERs were reinserted to deposit lithium on the lower divertor target for 10 min, at rates of 10-70 mg/min, prior to the next discharge. The major improvements in plasma performance from these lithium depositions include: 1) plasma density reduction as a result of lithium deposition; 2) suppression of ELMs; 3) improvement of energy confinement in a low-triangularity shape; 4) improvement in plasma performance for standard, high-triangularity discharges; 5) reduction of the required HeGDC time between discharges; 6) increased pedestal electron and ion temperature; 7) reduced SOL plasma density; and 8) reduced edge neutral density
- …