4,540 research outputs found
The use of a battery of tracking tests in the quantitative evaluation of neurological function
A tracking test battery has been applied in a drug trail designed to compare the efficacy of L-DOPA and amantadine to that of L-DOPA and placebo in the treatment of 28 patients with Parkinson's disease. The drug trial provided an ideal opportunity for objectively evaluating the usefulness of tracking tests in assessing changes in neurologic function. Evaluating changes in patient performance resulting from disease progression and controlled clinical trials is of great importance in establishing effective treatment programs
Design Readiness Of Multi-Material Concepts: Manufacturing And Joining Technology Integrated Evaluation Of Concept Maturity Levels Using Cardinal Coefficients
Maturity levels of components in early phases of product development are often assessed with Technology Readiness Levels. However, developing Multi-Material-Design (MMD) concepts for lightweight design, not only the manufacturability of the individual components is decisive, but also their joinability with each other and their integration into the rest system. This paper presents an approach for the evaluation of maturity levels of MMD concepts on the basis of cardinal coefficients considering a time forecast of the manufacturing and joining technologies required in the concept
The Role of Nonlinear Dynamics in Quantitative Atomic Force Microscopy
Various methods of force measurement with the Atomic Force Microscope (AFM)
are compared for their ability to accurately determine the tip-surface force
from analysis of the nonlinear cantilever motion. It is explained how
intermodulation, or the frequency mixing of multiple drive tones by the
nonlinear tip-surface force, can be used to concentrate the nonlinear motion in
a narrow band of frequency near the cantilevers fundamental resonance, where
accuracy and sensitivity of force measurement are greatest. Two different
methods for reconstructing tip-surface forces from intermodulation spectra are
explained. The reconstruction of both conservative and dissipative tip-surface
interactions from intermodulation spectra are demonstrated on simulated data.Comment: 25 pages (preprint, double space) 7 figure
Spectral Properties of delta-Plutonium: Sensitivity to 5f Occupancy
By combining the local density approximation (LDA) with dynamical mean field
theory (DMFT), we report a systematic analysis of the spectral properties of
-plutonium with varying occupancy. The LDA Hamiltonian is
extracted from a tight-binding (TB) fit to full-potential linearized augmented
plane-wave (FP-LAPW) calculations. The DMFT equations are solved by the exact
quantum Monte Carlo (QMC) method and the Hubbard-I approximation. We have shown
for the first time the strong sensitivity of the spectral properties to the
occupancy, which suggests using this occupancy as a fitting parameter in
addition to the Hubbard . By comparing with PES data, we conclude that the
``open shell'' configuration gives the best agreement, resolving the
controversy over ``open shell'' versus ``close shell'' atomic
configurations in -Pu.Comment: 6 pages, 2 embedded color figures, to appear in Physical Review
Effective treatment of highest instability in a subacute fragility fracture of the pelvis (FFP IV) using a cement augmented transsacral screw only.
The highest instability in fragility fractures of the pelvis (FFP) is noted in presence of H-, U-type sacral fractures. Suggested surgical treatment options include uni- or bilateral sacroiliac or transsacral screw fixation at different levels or in combination, as well as lumbopelvic and bilateral triangular lumbopelvic stabilization. However, distinct treatment recommendations for this subset of injuries are scarce. We present a case sustaining rapid FFP crescendo instability following initial conservative treatment of a FFP type II injury resulting in a U-type spinopelvic dissociation. Fixation using one percutaneous cement augmented transsacral S1 screw resulted in perpetual clinical improvements in pain and mobility in presence of radiologic fracture consolidation
New Pseudo-Phase Structure for -Pu
In this paper we propose a new pseudo-phase crystal structure, based on an
orthorhombic distortion of the diamond structure, for the ground-state
-phase of plutonium. Electronic-structure calculations in the
generalized-gradient approximation give approximately the same total energy for
the two structures. Interestingly, our new pseudo-phase structure is the same
as the Pu -phase structure except with very different b/a and c/a
ratios. We show how the contraction relative to the phase, principally
in the direction, leads to an -like structure in the [0,1,1] plane.
This is an important link between two complex structures of plutonium and opens
new possibilities for exploring the very rich phase diagram of Pu through
theoretical calculations
The nucleus pulposus microenvironment in the intervertebral disc: the fountain of youth?
The intervertebral disc (IVD) is a complex tissue, and its degeneration remains a problem for patients, without significant improvement in treatment strategies. This mostly age-related disease predominantly affects the nucleus pulposus (NP), the central region of the IVD. The NP tissue, and especially its microenvironment, exhibit changes that may be involved at the outset or affect the progression of IVD pathology. The NP tissue microenvironment is unique and can be defined by a variety of specific factors and components characteristic of its physiology and function. NP progenitor cell interactions with their surrounding microenvironment may be a key factor for the regulation of cellular metabolism, phenotype, and stemness. Recently, celltransplantation approaches have been investigated for the treatment of degenerative disc disease, highlighting the need to better understand if and how transplanted cells can give rise to healthy NP tissue. Hence, understanding all the components of the NP microenvironment seems to be critical to better gauge the success and outcomes of approaches for tissue engineering and future clinical applications. Knowledge about the components of the NP microenvironment, how NP progenitor cells interact with them, and how changes in their surroundings can alter their function is summarised. Recent discoveries in NP tissue engineering linked to the microenvironment are also reviewed, meaning how crosstalk within the microenvironment can be adjusted to promote NP regeneration. Associated clinical problems are also considered, connecting bench-to-bedside in the context of IVD degeneration
- …