220 research outputs found
Statistical significance of rich-club phenomena in complex networks
We propose that the rich-club phenomena in complex networks should be defined
in the spirit of bootstrapping, in which a null model is adopted to assess the
statistical significance of the rich-club detected. Our method can be served as
a definition of rich-club phenomenon and is applied to analyzing three real
networks and three model networks. The results improve significantly compared
with previously reported results. We report a dilemma with an exceptional
example, showing that there does not exist an omnipotent definition for the
rich-club phenomenon.Comment: 3 Revtex pages + 5 figure
Patterns of Interactions in Complex Social Networks Based on Coloured Motifs Analysis
Coloured network motifs are small subgraphs that enable to discover and interpret the patterns of interaction within the complex networks. The analysis of three-nodes motifs where the colour of the node reflects its high – white node or low – black node centrality in the social network is presented in the paper. The importance of the vertices is assessed by utilizing two measures: degree prestige and degree centrality. The distribution of motifs in these two cases is compared to mine the interconnection patterns between nodes. The analysis is performed on the social network derived from email communication
Coarse-Graining and Self-Dissimilarity of Complex Networks
Can complex engineered and biological networks be coarse-grained into smaller
and more understandable versions in which each node represents an entire
pattern in the original network? To address this, we define coarse-graining
units (CGU) as connectivity patterns which can serve as the nodes of a
coarse-grained network, and present algorithms to detect them. We use this
approach to systematically reverse-engineer electronic circuits, forming
understandable high-level maps from incomprehensible transistor wiring: first,
a coarse-grained version in which each node is a gate made of several
transistors is established. Then, the coarse-grained network is itself
coarse-grained, resulting in a high-level blueprint in which each node is a
circuit-module made of multiple gates. We apply our approach also to a
mammalian protein-signaling network, to find a simplified coarse-grained
network with three main signaling channels that correspond to cross-interacting
MAP-kinase cascades. We find that both biological and electronic networks are
'self-dissimilar', with different network motifs found at each level. The
present approach can be used to simplify a wide variety of directed and
nondirected, natural and designed networks.Comment: 11 pages, 11 figure
Subgraphs and network motifs in geometric networks
Many real-world networks describe systems in which interactions decay with
the distance between nodes. Examples include systems constrained in real space
such as transportation and communication networks, as well as systems
constrained in abstract spaces such as multivariate biological or economic
datasets and models of social networks. These networks often display network
motifs: subgraphs that recur in the network much more often than in randomized
networks. To understand the origin of the network motifs in these networks, it
is important to study the subgraphs and network motifs that arise solely from
geometric constraints. To address this, we analyze geometric network models, in
which nodes are arranged on a lattice and edges are formed with a probability
that decays with the distance between nodes. We present analytical solutions
for the numbers of all 3 and 4-node subgraphs, in both directed and
non-directed geometric networks. We also analyze geometric networks with
arbitrary degree sequences, and models with a field that biases for directed
edges in one direction. Scaling rules for scaling of subgraph numbers with
system size, lattice dimension and interaction range are given. Several
invariant measures are found, such as the ratio of feedback and feed-forward
loops, which do not depend on system size, dimension or connectivity function.
We find that network motifs in many real-world networks, including social
networks and neuronal networks, are not captured solely by these geometric
models. This is in line with recent evidence that biological network motifs
were selected as basic circuit elements with defined information-processing
functions.Comment: 9 pages, 6 figure
Evaluating Local Community Methods in Networks
We present a new benchmarking procedure that is unambiguous and specific to
local community-finding methods, allowing one to compare the accuracy of
various methods. We apply this to new and existing algorithms. A simple class
of synthetic benchmark networks is also developed, capable of testing
properties specific to these local methods.Comment: 8 pages, 9 figures, code included with sourc
Phospho-regulation of ATOH1 Is Required for Plasticity of Secretory Progenitors and Tissue Regeneration
The intestinal epithelium is largely maintained by self-renewing stem cells but with apparently committed progenitors also contributing, particularly following tissue damage. However, the mechanism of, and requirement for, progenitor plasticity in mediating pathological response remain unknown. Here we show that phosphorylation of the transcription factor Atoh1 is required for both the contribution of secretory progenitors to the stem cell pool and for a robust regenerative response. As confirmed by lineage tracing, Atoh1+ cells (Atoh1(WT)CreERT2 mice) give rise to multilineage intestinal clones both in the steady state and after tissue damage. In a phosphomutant Atoh1(9S/T-A)CreERT2 line, preventing phosphorylation of ATOH1 protein acts to promote secretory differentiation and inhibit the contribution of progenitors to self-renewal. Following chemical colitis, Atoh1+ cells of Atoh1(9S/T-A)CreERT2 mice have reduced clonogenicity that affects overall regeneration. Progenitor plasticity maintains robust self-renewal in the intestinal epithelium, and the balance between stem and progenitor fate is directly coordinated by ATOH1 multisite phosphorylation
Potts Model On Random Trees
We study the Potts model on locally tree-like random graphs of arbitrary
degree distribution. Using a population dynamics algorithm we numerically solve
the problem exactly. We confirm our results with simulations. Comparisons with
a previous approach are made, showing where its assumption of uniform local
fields breaks down for networks with nodes of low degree.Comment: 10 pages, 3 figure
Recommended from our members
Stops making sense: translational trade-offs and stop codon reassignment
Background
Efficient gene expression involves a trade-off between (i) premature termination of protein synthesis; and (ii) readthrough, where the ribosome fails to dissociate at the terminal stop. Sense codons that are similar in sequence to stop codons are more susceptible to nonsense mutation, and are also likely to be more susceptible to transcriptional or translational errors causing premature termination. We therefore expect this trade-off to be influenced by the number of stop codons in the genetic code. Although genetic codes are highly constrained, stop codon number appears to be their most volatile feature.
Results
In the human genome, codons readily mutable to stops are underrepresented in coding sequences. We construct a simple mathematical model based on the relative likelihoods of premature termination and readthrough. When readthrough occurs, the resultant protein has a tail of amino acid residues incorrectly added to the C-terminus. Our results depend strongly on the number of stop codons in the genetic code. When the code has more stop codons, premature termination is relatively more likely, particularly for longer genes. When the code has fewer stop codons, the length of the tail added by readthrough will, on average, be longer, and thus more deleterious. Comparative analysis of taxa with a range of stop codon numbers suggests that genomes whose code includes more stop codons have shorter coding sequences.
Conclusions
We suggest that the differing trade-offs presented by alternative genetic codes may result in differences in genome structure. More speculatively, multiple stop codons may mitigate readthrough, counteracting the disadvantage of a higher rate of nonsense mutation. This could help explain the puzzling overrepresentation of stop codons in the canonical genetic code and most variants
The role of mentorship in protege performance
The role of mentorship on protege performance is a matter of importance to
academic, business, and governmental organizations. While the benefits of
mentorship for proteges, mentors and their organizations are apparent, the
extent to which proteges mimic their mentors' career choices and acquire their
mentorship skills is unclear. Here, we investigate one aspect of mentor
emulation by studying mentorship fecundity---the number of proteges a mentor
trains---with data from the Mathematics Genealogy Project, which tracks the
mentorship record of thousands of mathematicians over several centuries. We
demonstrate that fecundity among academic mathematicians is correlated with
other measures of academic success. We also find that the average fecundity of
mentors remains stable over 60 years of recorded mentorship. We further uncover
three significant correlations in mentorship fecundity. First, mentors with
small mentorship fecundity train proteges that go on to have a 37% larger than
expected mentorship fecundity. Second, in the first third of their career,
mentors with large fecundity train proteges that go on to have a 29% larger
than expected fecundity. Finally, in the last third of their career, mentors
with large fecundity train proteges that go on to have a 31% smaller than
expected fecundity.Comment: 23 pages double-spaced, 4 figure
- …