241 research outputs found

    Correlation functions for time-dependent calculation of linear-response functions

    Full text link
    We emphasize the importance of choosing an appropriate correlation function to reduce numerical errors in calculating the linear-response function as a Fourier transformation of a time-dependent correlation function. As an example we take dielectric functions of silicon crystal calculated with a time-dependent method proposed by Iitaka et al. [Phys. Rev. E 56, 1222 (1997)].Comment: to be published in Phys.Rev.E 01 Dec 1997, 2 pages, 4 figures, more information at http://espero.riken.go.jp

    Fast Algorithm for Finding the Eigenvalue Distribution of Very Large Matrices

    Get PDF
    A theoretical analysis is given of the equation of motion method, due to Alben et al., to compute the eigenvalue distribution (density of states) of very large matrices. The salient feature of this method is that for matrices of the kind encountered in quantum physics the memory and CPU requirements of this method scale linearly with the dimension of the matrix. We derive a rigorous estimate of the statistical error, supporting earlier observations that the computational efficiency of this approach increases with matrix size. We use this method and an imaginary-time version of it to compute the energy and the specific heat of three different, exactly solvable, spin-1/2 models and compare with the exact results to study the dependence of the statistical errors on sample and matrix size.Comment: 24 pages, 24 figure

    Temperature dependence of ESR intensity for the nanoscale molecular magnet V15

    Full text link
    The electron spin resonance (ESR) of nanoscale molecular magnet V15{\rm V}_{15} is studied. Since the Hamiltonian of V15{\rm V}_{15} has a large Hilbert space and numerical calculations of the ESR signal evaluating the Kubo formula with exact diagonalization method is difficult, we implement the formula with the help of the random vector technique and the Chebyshev polynominal expansion, which we name the double Chebyshev expansion method. We calculate the temperature dependence of the ESR intensity of V15{\rm V}_{15} and compare it with the data obtained in experiment. As another complementary approach, we also implement the Kubo formula with the subspace iteration method taking only important low-lying states into account. We study the ESR absorption curve below 100K100{\rm K} by means of both methods. We find that side peaks appear due to the Dzyaloshinsky-Moriya interaction and these peaks grows as temperature decreases.Comment: 9 pages, 4 figures. To appear in J. Phys. Soc. Jpn. Supp

    Algorithm for Linear Response Functions at Finite Temperatures: Application to ESR spectrum of s=1/2 Antiferromagnet Cu benzoate

    Full text link
    We introduce an efficient and numerically stable method for calculating linear response functions χ(q,ω)\chi(\vec{q},\omega) of quantum systems at finite temperatures. The method is a combination of numerical solution of the time-dependent Schroedinger equation, random vector representation of trace, and Chebyshev polynomial expansion of Boltzmann operator. This method should be very useful for a wide range of strongly correlated quantum systems at finite temperatures. We present an application to the ESR spectrum of s=1/2 antiferromagnet Cu benzoate.Comment: 4 pages, 4 figure

    Equivalent birational embeddings II: divisors

    Full text link
    Two divisors in n\P^n are said to be Cremona equivalent if there is a Cremona modification sending one to the other. We produce infinitely many non equivalent divisorial embeddings of any variety of dimension at most 14. Then we study the special case of plane curves and rational hypersurfaces. For the latter we characterise surfaces Cremona equivalent to a plane.Comment: v2 Exposition improved, thanks to referee, unconditional characterization of surfaces Cremona equivalent to a plan

    Time-dependent properties of proton decay from crossing single-particle metastable states in deformed nuclei

    Get PDF
    A dynamical study of the decay of a metastable state by quantum tunneling through an anisotropic, non separable, two-dimensional potential barrier is performed by the numerical solution of the time-dependent Schrodinger equation. Initial quasi- stationary proton states are chosen in the framework of a deformed Woods-Saxon single-particle model. The decay of two sets of states corresponding to true and quasi levels-crossing is studied and the evolution of their decay properties as a function of nuclear deformation is calculated around the crossing point. The results show that the investigation of the proton decay from metastable states in deformed nuclei can unambiguously distinguish between the two types of crossing and determine the structure of the nuclear states involved.Comment: 15 pages, 9 figures, submitted to Phys. Rev.

    Fast algorithm for calculating two-photon absorption spectra

    Full text link
    We report a numerical calculation of the two-photon absorption coefficient of electrons in a binding potential using the real-time real-space higher-order difference method. By introducing random vector averaging for the intermediate state, the task of evaluating the two-dimensional time integral is reduced to calculating two one-dimensional integrals. This allows the reduction of the computation load down to the same order as that for the linear response function. The relative advantage of the method compared to the straightforward multi-dimensional time integration is greater for the calculation of non-linear response functions of higher order at higher energy resolution.Comment: 4 pages, 2 figures. It will be published in Phys. Rev. E on 1, March, 199
    corecore