2,500 research outputs found

    Exact dimer ground state of the two dimensional Heisenberg spin system SrCu_2(BO_3)_2

    Full text link
    The two dimensional Heisenberg model for SrCu_2(BO_3)_2 has the exact dimer ground state which was proven by Shastry and Sutherland almost twenty years ago. The critical value of the quantum phase transition from the dimer state to the N\'{e}el ordered state is determined. Analysis of the experimental data shows that SrCu_2(BO_3)_2 has the dimer ground state but is close to the transition point, which leads to the unusual temperature dependence of the susceptibility. Almost localized nature of the triplet excitations explains the plateaus observed in the magnetization curve.Comment: 4 pages, 5 figures, to appear in PR

    Micro-deformation of the NEEM ice core: implications for stratigraphic interpretation

    Get PDF
    第2回極域科学シンポジウム 氷床コアセッション 11月16日(水) 国立極地研究所 2階大会議

    Swift Highly Charged Ion Channelling

    Full text link
    We review recent experimental and theoretical progress made in the scope of swift highly charged ion channelling in crystals. The usefulness of such studies is their ability to yield impact parameter information on charge transfer processes, and also on some time related problems. We discuss the cooling and heating phenomena at MeV/u energies, results obtained with decelerated H-like ion beams at GSI and with ions having an excess of electrons at GANIL, the superdensity effect along atomic strings and Resonant Coherent Excitation.Comment: to be published in Journal of Physics

    Impurity Effect on Spin Ladder System

    Full text link
    Effects of nonmagnetic impurity doping in a spin ladder system with a spin gap are investigated by the exact diagonalization as well as by the variational Monte Carlo calculations. Substantial changes in macroscopic properties such as enhancements in spin correlations and magnetic susceptibilities are observed in the low impurity concentration region, which are caused by the increase of low-energy states. These results suggest that small but finite amount of nonmagnetic impurity doping relevantly causes the reduction or the vanishment of the spin gap. This qualitatively explains the experimental result of Zn-doped SrCu2_{2}O3_{3} where small doping induces gapless nature. We propose a possible scenario for this drastic change as a quantum phase transition in a spin gapped ladder system due to spinon doping effects.Comment: 14 pages LaTeX including 5 PS figure

    Gravitational Effects of Quantum Fields in the Interior of a Cylindrical Black Hole

    Full text link
    The gravitational back-reaction is calculated for the conformally invariant scalar field within a black cosmic string interior with cosmological constant. Using the perturbed metric, the gravitational effects of the quantum field are calculated. It is found that the perturbations initially strengthen the singularity. This effect is similar to the case of spherical symmetry (without cosmological constant). This indicates that the behaviour of quantum effects may be universal and not dependent on the geometry of the spacetime nor the presence of a non-zero cosmological constant.Comment: 13 pages, 1 figure, uses AMS package. D.E. solution corrected. Some qualitative results are change

    Three-leg Antiferromagnetic Heisenberg Ladder with Frustrated Boundary Condition; Ground State Properties

    Full text link
    The antiferromagnetic Heisenberg spin systems on the three-leg ladder are investigated. Periodic boundary condition is imposed in the rung direction. The system has an excitation gap for all antiferromagnetic inter-chain coupling (J>0J_{\perp}>0). The estimated gap for the strong coupling limit (J/J1J_{\perp}/J_1 \to \infty) is 0.28J1J_1. Although the interaction is homogeneous and only nearest-neighbor, the ground states of the system are dimerized and break the translational symmetry in the thermodynamic limit. Introducing the next-nearest neighbor coupling (J2J_2), we can see that the system is solved exactly. The ground state wave function is completely dimer-ordered. Using density matrix renomalization group algorithm, we show numerically that the original model (J2=0J_2=0) has the same nature with the exactly solvable model. The ground state properties of the ladder with a higher odd number of legs are also discussed.Comment: 15 pages, LaTeX, to be published in J.Phys.Soc.Jpn. Vol. 66 No. 1

    Dynamical generation of fuzzy extra dimensions, dimensional reduction and symmetry breaking

    Get PDF
    We present a renormalizable 4-dimensional SU(N) gauge theory with a suitable multiplet of scalar fields, which dynamically develops extra dimensions in the form of a fuzzy sphere S^2. We explicitly find the tower of massive Kaluza-Klein modes consistent with an interpretation as gauge theory on M^4 x S^2, the scalars being interpreted as gauge fields on S^2. The gauge group is broken dynamically, and the low-energy content of the model is determined. Depending on the parameters of the model the low-energy gauge group can be SU(n), or broken further to SU(n_1) x SU(n_2) x U(1), with mass scale determined by the size of the extra dimension.Comment: 27 pages. V2: discussion and references added, published versio

    63Cu NQR evidence of dimensional crossover to anisotropic 2d regime in S= 1/2 three-leg ladder Sr2Cu3O5

    Full text link
    We probed spin-spin correlations up to 725 K with 63Cu NQR in the S= 1/2 three-leg ladder Sr2Cu3O5. We present experimental evidence that below 300 K, weak inter-ladder coupling causes dimensional crossover of the spin-spin correlation length \xi from quasi-1d (\xi ~ 1/T) to anisotropic 2d regime (\xi \~ exp[2\pi\rho_{s}/T], where 2\pi\rho_{s} = 290 +/- 30 K is the effective spin stiffness). This is the first experimental verification of the renormalized classical behavior of the anisotropic non-linear sigma model in 2d, which has been recently proposed for the striped phase in high T_{c} cuprates.Comment: 4 pages, 3 figure

    Out-of-plane instability and electron-phonon contribution to s- and d-wave pairing in high-temperature superconductors; LDA linear-response calculation for doped CaCuO2 and a generic tight-binding model

    Full text link
    The equilibrium structure, energy bands, phonon dispersions, and s- and d-channel electron-phonon interactions (EPIs) are calculated for the infinite-layer superconductor CaCuO2 doped with 0.24 holes per CuO2. The LDA and the linear-response full-potential LMTO method were used. In the equilibrium structure, oxygen is found to buckle slightly out of the plane and, as a result, the characters of the energy bands near EF are found to be similar to those of other optimally doped HTSCs. For the EPI we find lambda(s)=0.4, in accord with previous LDA calculations for YBa2Cu3O7. This supports the common belief that the EPI mechanism alone is insufficient to explain HTSC. Lambda(x^2-y^2) is found to be positive and nearly as large as lambda(s). This is surprising and indicates that the EPI could enhance some other d-wave pairing mechanism. Like in YBa2Cu3O7, the buckling modes contribute significantly to the EPI, although these contributions are proportional to the static buckling and would vanish for flat planes. These numerical results can be understood from a generic tight-binding model originally derived from the LDA bands of YBa2Cu3O7. In the future, the role of anharmonicity of the buckling-modes and the influence of the spin-fluctuations should be investigated.Comment: 19 pages, 9 Postscript figures, Late
    corecore