2,138 research outputs found
INTERTEMPORAL CHOICES WITH TEMPORAL PREFERENCES
This dissertation explores the general equilibrium implications of inter-temporal decision-making from a behavioral perspective. The decision makers in my essays have psychology-driven, non-traditional preferences and they either have short term planning horizons, due to bounded rationality (Essay 1), or have present biased preferences (Essay 2) or their utilities depend not only on the periodic consumption but are also dependent upon their expectations about present and future optimal consumption (Essay 3). Finally, they get utilities from the act of caring for others through giving and volunteering (Essay 4). The decision makers who are defined by these preferences are re-optimizing over time if they realize that their past decisions for today are no longer optimal and this is the key mechanism that helps replicate the mean lifecycle consumption data, which is known to be hump-shaped over the lifecycle. In the first essay, I prove that there is an income structure that leads to a consumption hump for each time preference. Searching via simulation, I find the best planning horizon that is compatible with matching data for the US economy. In the second essay, I find that the consumption hump is obtained even without the credit constraint if the agent is naive and keeps re-optimizing over time. In a third essay, I demonstrate that reference-dependent preferences can also generate a hump-shaped consumption profile when the agent has age-dependent loss aversion. In the fourth and the final essay, I show how the inclusion of time endowment generates full-blown lifecycle pattern of not only consumption, but also giving, leisure, and volunteer time, which closely follow the data
Capturing the essence of folding and functions of biomolecules using Coarse-Grained Models
The distances over which biological molecules and their complexes can
function range from a few nanometres, in the case of folded structures, to
millimetres, for example during chromosome organization. Describing phenomena
that cover such diverse length, and also time scales, requires models that
capture the underlying physics for the particular length scale of interest.
Theoretical ideas, in particular, concepts from polymer physics, have guided
the development of coarse-grained models to study folding of DNA, RNA, and
proteins. More recently, such models and their variants have been applied to
the functions of biological nanomachines. Simulations using coarse-grained
models are now poised to address a wide range of problems in biology.Comment: 37 pages, 8 figure
A Coupling Algorithm of Computational Fluid and Particle Dynamics (CFPD)
Computational fluid dynamics (CFD) and particle hydrodynamics (PHD) have been developed almost independently. CFD is classified into Eulerian and Lagrangian. The Eulerian approach observes fluid motion at specific locations in the space, and the Lagrangian approach looks at fluid motion where the observer follows an individual fluid parcel moving through space and time. In classical mechanics, particle dynamic simulations include molecular dynamics, Brownian dynamics, dissipated particle dynamics, Stokesian dynamics, and granular dynamics (often called discrete element method). Dissipative hydrodynamic method unifies these dynamic simulation algorithms and provides a general view of how to mimic particle motion in gas and liquid. Studies on an accurate and rigorous coupling of CFD and PHD are in literature still in a growing stage. This chapter shortly reviews the past development of CFD and PHD and proposes a general algorithm to couple the two dynamic simulations without losing theoretical rigor and numerical accuracy of the coupled simulation
Dissipative Dynamics of Granular Materials
Granules are inelastic particles, undergoing dissipative and repulsive forces on contact. A granular state consists of a conglomeration of discrete, non-Brownian particles in a combined state of solid, liquid, and gas. Modern theoretical physics lacks general theories for the granular states. Simulation methods for particle dynamics include molecular dynamics (MD), Brownian dynamics (BD), Stokesian dynamics (SD), dissipative particle dynamics (DPD), and dissipative hydrodynamics (DHD). These conventional methods were originally designed to mimic the small-particle motion being less influenced by the gravitational force. There are three reasons that a conventional method cannot be directly applied to investigate granular dynamics. First, volume exclusion forces between colliding particles are often disregarded due to strong repulsive forces between negatively charged colloids and nanoparticles. Second, the gravitational force is not significant as applied to small, light particles, and therefore it is often discarded in force/torque calculations. Third, energy conservation in an equilibrium state is not guaranteed for the granular system due to the inelastic and frictional nature of the granular materials. In this light, this chapter discusses the fundamentals of particle dynamics methods, formulates a robust theoretical framework for granular dynamics, and discusses the current applications and future directions of computational granular dynamics
Lyman alpha line formation in starbursting galaxies II. Extremely Thick, Dustless, and Static HI Media
The Lya line transfer in an extremely thick medium of neutral hydrogen is
investigated by adopting an accelerating scheme in our Monte Carlo code to skip
a large number of core or resonant scatterings. This scheme reduces computing
time significantly with no sacrifice in the accuracy of the results. We applied
this numerical method to the Lya transfer in a static, uniform, dustless, and
plane-parallel medium. Two types of photon sources have been considered, the
midplane source and the uniformly distributed sources. The emergent profiles
show double peaks and absorption trough at the line-center. We compared our
results with the analytic solutions derived by previous researchers, and
confirmed that both solutions are in good agreement with each other. We
investigated the directionality of the emergent Lya photons and found that limb
brightening is observed in slightly thick media while limb darkening appears in
extremely thick media. The behavior of the directionality is noted to follow
that of the Thomson scattered radiation in electron clouds, because both Lya
wing scattering and Thomson scattering share the same Rayleigh scattering phase
function. The mean number of wing scatterings just before escape is in exact
agreement with the prediction of the diffusion approximation. The Lya photons
constituting the inner part of the emergent profiles follow the relationship
derived from the diffusion approximation. We present a brief discussion on the
application of our results to the formation of Lya broad absorption troughs and
P-Cygni type Lya profiles seen in the UV spectra of starburst galaxies.Comment: 24 papges, 12 figures, The revised version submitted to Ap
Singly-Peaked P-Cygni type Ly from starburst galaxies
We present results of Monte Carlo calculations for the Lya line transfer in
an expanding dusty supershell, where Lya source is a well-localized star
cluster in a starburst galaxy.The escape of Lya photons from such system is
achieved by a number of back-scattering, and so a series of emission peaks are
formed redward of the systemic redshift by back-scattering. However, majority
of observed Lya emission from starbursts show singly-peaked asymmetric
profiles. We find in this paper that, in order to form a singly-peaked Lya
emission, dust should be distributed in the ionized bubble, as well as within
the supershell of neutral hydrogen. We also find that the overall escape
fraction of Lya photons is determined by the HI column density of the
supershell, the expansion velocity of the supershell, and the spatial
distribution of dust. However, the kinematic information of the expanding
supershell is preserved in the profile of Lya emission even when the supershell
is dusty. Our results are potentially useful to fit the P-Cygni type Lya line
profiles from starburst galaxies, either nearby galaxies or high-z Lyman break
galaxies (LBGs).Comment: Original version was submitted to MNRAS on 13, Jan, 2003, which was
withdrawn. After heavey revison, its essence was resubmitted to ApJL on 18
Aug. 2003. 2nd revision. 10 pages, 3 figure
Experimental studies of strong dipolar interparticle interaction in monodisperse Fe3O4 nanoparticles
Interparticle interaction of monodisperse Fe3 O4 nanoparticles has been experimentally investigated by dispersing the nanoparticles in solvents. With increasing the interparticle distances to larger than 100 nm in a controlled manner, the authors found that the blocking temperature (TB) of the nanoparticles drops continuously and eventually gets saturated with a total drop in TB of 7-17 K observed for 3, 5, and 7 nm samples, compared with their respective nanopowder samples. By carefully studying the dependence of TB on the interparticle distance, the authors could demonstrate that the experimental dependence of TB follows the theoretical curve of the dipole-dipole interaction. © 2007 American Institute of Physics.open313
On the Origin of Peak-dip-hump Structure in the In-plane Optical Conductivity of the High Cuprates; Role of Antiferromagnetic Spin Fluctuations of Short Range Order
An improved U(1) slave-boson approach is applied to study the optical
conductivity of the two dimensional systems of antiferromagnetically correlated
electrons over a wide range of hole doping and temperature. Interplay between
the spin and charge degrees of freedom is discussed to explain the origin of
the peak-dip-hump structure in the in-plane conductivity of high
cuprates. The role of spin fluctuations of short range order(spin singlet pair)
is investigated. It is shown that the spin fluctuations of the short range
order can cause the mid-infrared hump, by exhibiting a linear increase of the
hump frequency with the antiferromagnetic Heisenberg coupling strength
- …