2,138 research outputs found

    INTERTEMPORAL CHOICES WITH TEMPORAL PREFERENCES

    Get PDF
    This dissertation explores the general equilibrium implications of inter-temporal decision-making from a behavioral perspective. The decision makers in my essays have psychology-driven, non-traditional preferences and they either have short term planning horizons, due to bounded rationality (Essay 1), or have present biased preferences (Essay 2) or their utilities depend not only on the periodic consumption but are also dependent upon their expectations about present and future optimal consumption (Essay 3). Finally, they get utilities from the act of caring for others through giving and volunteering (Essay 4). The decision makers who are defined by these preferences are re-optimizing over time if they realize that their past decisions for today are no longer optimal and this is the key mechanism that helps replicate the mean lifecycle consumption data, which is known to be hump-shaped over the lifecycle. In the first essay, I prove that there is an income structure that leads to a consumption hump for each time preference. Searching via simulation, I find the best planning horizon that is compatible with matching data for the US economy. In the second essay, I find that the consumption hump is obtained even without the credit constraint if the agent is naive and keeps re-optimizing over time. In a third essay, I demonstrate that reference-dependent preferences can also generate a hump-shaped consumption profile when the agent has age-dependent loss aversion. In the fourth and the final essay, I show how the inclusion of time endowment generates full-blown lifecycle pattern of not only consumption, but also giving, leisure, and volunteer time, which closely follow the data

    Capturing the essence of folding and functions of biomolecules using Coarse-Grained Models

    Full text link
    The distances over which biological molecules and their complexes can function range from a few nanometres, in the case of folded structures, to millimetres, for example during chromosome organization. Describing phenomena that cover such diverse length, and also time scales, requires models that capture the underlying physics for the particular length scale of interest. Theoretical ideas, in particular, concepts from polymer physics, have guided the development of coarse-grained models to study folding of DNA, RNA, and proteins. More recently, such models and their variants have been applied to the functions of biological nanomachines. Simulations using coarse-grained models are now poised to address a wide range of problems in biology.Comment: 37 pages, 8 figure

    A Coupling Algorithm of Computational Fluid and Particle Dynamics (CFPD)

    Get PDF
    Computational fluid dynamics (CFD) and particle hydrodynamics (PHD) have been developed almost independently. CFD is classified into Eulerian and Lagrangian. The Eulerian approach observes fluid motion at specific locations in the space, and the Lagrangian approach looks at fluid motion where the observer follows an individual fluid parcel moving through space and time. In classical mechanics, particle dynamic simulations include molecular dynamics, Brownian dynamics, dissipated particle dynamics, Stokesian dynamics, and granular dynamics (often called discrete element method). Dissipative hydrodynamic method unifies these dynamic simulation algorithms and provides a general view of how to mimic particle motion in gas and liquid. Studies on an accurate and rigorous coupling of CFD and PHD are in literature still in a growing stage. This chapter shortly reviews the past development of CFD and PHD and proposes a general algorithm to couple the two dynamic simulations without losing theoretical rigor and numerical accuracy of the coupled simulation

    Dissipative Dynamics of Granular Materials

    Get PDF
    Granules are inelastic particles, undergoing dissipative and repulsive forces on contact. A granular state consists of a conglomeration of discrete, non-Brownian particles in a combined state of solid, liquid, and gas. Modern theoretical physics lacks general theories for the granular states. Simulation methods for particle dynamics include molecular dynamics (MD), Brownian dynamics (BD), Stokesian dynamics (SD), dissipative particle dynamics (DPD), and dissipative hydrodynamics (DHD). These conventional methods were originally designed to mimic the small-particle motion being less influenced by the gravitational force. There are three reasons that a conventional method cannot be directly applied to investigate granular dynamics. First, volume exclusion forces between colliding particles are often disregarded due to strong repulsive forces between negatively charged colloids and nanoparticles. Second, the gravitational force is not significant as applied to small, light particles, and therefore it is often discarded in force/torque calculations. Third, energy conservation in an equilibrium state is not guaranteed for the granular system due to the inelastic and frictional nature of the granular materials. In this light, this chapter discusses the fundamentals of particle dynamics methods, formulates a robust theoretical framework for granular dynamics, and discusses the current applications and future directions of computational granular dynamics

    Lyman alpha line formation in starbursting galaxies II. Extremely Thick, Dustless, and Static HI Media

    Full text link
    The Lya line transfer in an extremely thick medium of neutral hydrogen is investigated by adopting an accelerating scheme in our Monte Carlo code to skip a large number of core or resonant scatterings. This scheme reduces computing time significantly with no sacrifice in the accuracy of the results. We applied this numerical method to the Lya transfer in a static, uniform, dustless, and plane-parallel medium. Two types of photon sources have been considered, the midplane source and the uniformly distributed sources. The emergent profiles show double peaks and absorption trough at the line-center. We compared our results with the analytic solutions derived by previous researchers, and confirmed that both solutions are in good agreement with each other. We investigated the directionality of the emergent Lya photons and found that limb brightening is observed in slightly thick media while limb darkening appears in extremely thick media. The behavior of the directionality is noted to follow that of the Thomson scattered radiation in electron clouds, because both Lya wing scattering and Thomson scattering share the same Rayleigh scattering phase function. The mean number of wing scatterings just before escape is in exact agreement with the prediction of the diffusion approximation. The Lya photons constituting the inner part of the emergent profiles follow the relationship derived from the diffusion approximation. We present a brief discussion on the application of our results to the formation of Lya broad absorption troughs and P-Cygni type Lya profiles seen in the UV spectra of starburst galaxies.Comment: 24 papges, 12 figures, The revised version submitted to Ap

    Singly-Peaked P-Cygni type Lyα\alpha from starburst galaxies

    Full text link
    We present results of Monte Carlo calculations for the Lya line transfer in an expanding dusty supershell, where Lya source is a well-localized star cluster in a starburst galaxy.The escape of Lya photons from such system is achieved by a number of back-scattering, and so a series of emission peaks are formed redward of the systemic redshift by back-scattering. However, majority of observed Lya emission from starbursts show singly-peaked asymmetric profiles. We find in this paper that, in order to form a singly-peaked Lya emission, dust should be distributed in the ionized bubble, as well as within the supershell of neutral hydrogen. We also find that the overall escape fraction of Lya photons is determined by the HI column density of the supershell, the expansion velocity of the supershell, and the spatial distribution of dust. However, the kinematic information of the expanding supershell is preserved in the profile of Lya emission even when the supershell is dusty. Our results are potentially useful to fit the P-Cygni type Lya line profiles from starburst galaxies, either nearby galaxies or high-z Lyman break galaxies (LBGs).Comment: Original version was submitted to MNRAS on 13, Jan, 2003, which was withdrawn. After heavey revison, its essence was resubmitted to ApJL on 18 Aug. 2003. 2nd revision. 10 pages, 3 figure

    Experimental studies of strong dipolar interparticle interaction in monodisperse Fe3O4 nanoparticles

    Get PDF
    Interparticle interaction of monodisperse Fe3 O4 nanoparticles has been experimentally investigated by dispersing the nanoparticles in solvents. With increasing the interparticle distances to larger than 100 nm in a controlled manner, the authors found that the blocking temperature (TB) of the nanoparticles drops continuously and eventually gets saturated with a total drop in TB of 7-17 K observed for 3, 5, and 7 nm samples, compared with their respective nanopowder samples. By carefully studying the dependence of TB on the interparticle distance, the authors could demonstrate that the experimental dependence of TB follows the theoretical curve of the dipole-dipole interaction. © 2007 American Institute of Physics.open313

    On the Origin of Peak-dip-hump Structure in the In-plane Optical Conductivity of the High TCT_C Cuprates; Role of Antiferromagnetic Spin Fluctuations of Short Range Order

    Full text link
    An improved U(1) slave-boson approach is applied to study the optical conductivity of the two dimensional systems of antiferromagnetically correlated electrons over a wide range of hole doping and temperature. Interplay between the spin and charge degrees of freedom is discussed to explain the origin of the peak-dip-hump structure in the in-plane conductivity of high TCT_C cuprates. The role of spin fluctuations of short range order(spin singlet pair) is investigated. It is shown that the spin fluctuations of the short range order can cause the mid-infrared hump, by exhibiting a linear increase of the hump frequency with the antiferromagnetic Heisenberg coupling strength
    corecore