163 research outputs found

    Studies of extended planetary atmospheres

    Get PDF
    There was a theoretical study of physical and chemical processes in the stratosphere, later broadened to include the mesosphere. Particular emphasis was laid on testing of proposed height profiles of the eddy diffusion coefficient against observed tracer data. Eventually the effort shifted to study of ozone time series in satellite data, and interpretation in terms of aeronomical processes. Since all this work is computer-intensive, the first year of funding also contributed to the acquisition of a powerful minicomputer system, in collaboration with several other faculty members. This proved to be highly successful and cost effective

    Planetary Aeronomy and Related Studies

    Get PDF
    Mercury atmosphere - Sprague and Hunten, in collaboration with Katharina Lodders of Washington University, proposed, mainly on cosmochemical grounds, that S atoms are an important constituent of the atmosphere (30 times more abundant than sodium). This paper has appeared in Icarus. We also suggest that condensed sulfur is an excellent candidate for the radar-bright polar caps, more plausible than water ice because the latter is only barely stable even in permanently-shadowed craters. The best prospect for detection of the vapor is through its resonance lines, a triplet near 1814 A. Mercury is too close to the Sun to be observed by any existing space telescope, but there is some prospect that the search could be made from a Shuttle-based spectrograph such as Lyle Broadfoot's USTAR. Sprague and Hunten have completed an elaborate data analysis of over 100 measurements of the Na D lines, obtained with the 61-inch telescope and our echelle spectrograph. Full account has been taken of the radiative-transfer problem that arises because the Na atmosphere is not optically thin. The output of this code is used in another program that makes an elaborate inverse interpolation in two angles and optical depth and computes the effect of the seeing (always bad for Mercury). The seeing is determined by fitting cuts across a computed image to part of the spectrum adjacent to the sodium lines, and typically ranges from slightly less than 4 arcsec to worse than 6 (diameter at l/e of a Gaussian). The final result is a list of Na abundances, with some information on spatial distribution. One particularly interesting result of further analysis is a strong abundance maximum in the morning relative to the afternoon, confirming an earlier result for potassium, based on much fewer measurements. The analysis are completed during the extension of the present grant. This work depends heavily on the Hapke parameters used to estimate the reflectance of Mercury's surface. The paper by Domingue et al. examines the credibility of the available parameters, which are derived from disk-unresolved photometry, and concludes that errors in the derived Na abundances could be as great as 30%

    1999 Quadrantids and the lunar Na atmosphere

    Get PDF
    Enhancements of the Na emission and temperature from the lunar atmosphere were reported during the Leonids meteor showers of 1995, 1997 and 1998. Here we report a search for similar enhancement during the 1999 Quadrantids, which have the highest mass flux of any of the major streams. No enhancements were detected. We suggest that different chemical-physical properties of the Leonid and Quadrantid streams may be responsible for the difference.Comment: 5 pages, 1 figure, accepted for publication in MNRA

    Planetary astronomy

    Get PDF
    The authors profile the field of astronomy, identify some of the key scientific questions that can be addressed during the decade of the 1990's, and recommend several facilities that are critically important for answering these questions. Scientific opportunities for the 1990' are discussed. Areas discussed include protoplanetary disks, an inventory of the solar system, primitive material in the solar system, the dynamics of planetary atmospheres, planetary rings and ring dynamics, the composition and structure of the atmospheres of giant planets, the volcanoes of IO, and the mineralogy of the Martian surface. Critical technology developments, proposed projects and facilities, and recommendations for research and facilities are discussed

    Mars Aeronomy Observer: Report of the Science Working Team

    Get PDF
    The Mars Aeronomy Observer (MAO) is a candidate follow-on mission to Mars Observer (MO) in the Planetary Observer Program. The four Mariner and two Viking spacecraft sent to Mars between 1965 and 1976 have provided a wealth of information concerning Martian planetology. The Mars Observer, to be launched in 1990, will build on their results by further examining the elemental and mineralogical composition of the surface, the strength and multipolar composition of the planetary magnetic field, the gravitational field and topography, and the circulation of the lower atmosphere. The Mars Aeronomy Observer is intended to address the last major aspects of Martian environment which have yet to be investigated: the upper atmosphere, the ionsphere, and the solar wind interaction region

    Abiotic formation of O2 and O3 in high-CO2 terrestrial atmospheres

    Full text link
    Previous research has indicated that high amounts of ozone (O3) and oxygen (O2) may be produced abiotically in atmospheres with high concentrations of CO2. The abiotic production of these two gases, which are also characteristic of photosynthetic life processes, could pose a potential "false-positive" for remote-sensing detection of life on planets around other stars.We show here that such false positives are unlikely on any planet that possesses abundant liquid water, as rainout of oxidized species onto a reduced planetary surface should ensure that atmospheric H2 concentrations remain relatively high, and that O2 and O3 remain low. Our aim is to determine the amount of O3 and O2 formed in a high CO2 atmosphere for a habitable planet without life. We use a photochemical model that considers hydrogen (H2) escape and a detailed hydrogen balance to calculate the O2 and O3 formed on planets with 0.2 of CO2 around the Sun, and 0.02, 0.2 and 2 bars of CO2 around a young Sun-like star with higher UV radiation. The concentrations obtained by the photochemical model were used as input in a radiative transfer model that calculated the spectra of the modeled planets. The O3 and O2 concentrations in the simulated planets are extremely small, and unlikely to produce a detectable signature in the spectra of those planets. We conclude that with a balanced hydrogen budget, and for planets with an active hydrological cycle, abiotic formation of O2 and O3 is unlikely to create a possible false positive for life detection in either the visible/near-infrared or mid-infrared wavelength regimes.Comment: 27 pages, 15 figures, Astronomy & Astrophysics accepte

    A review of composite product data interoperability and product life-cycle management challenges in the composites industry

    Get PDF
    A review of composite product data interoperability and product life-cycle management challenges is presented, which addresses “Product Life-cycle Management”, developments in materials. The urgent need for this is illustrated by the life-cycle management issues faced in modern military aircraft, where in-service failure of composite parts is a problem, not just in terms of engineering understanding, but also in terms of the process for managing and maintaining the fleet. A demonstration of the use of ISO 10303-235 for a range of through-life composite product data is reported. The standardization of the digital representation of data can help businesses to automate data processing. With the development of new materials, the requirements for data information models for materials properties are evolving, and standardization drives transparency, improves the efficiency of data analysis, and enhances data accuracy. Current developments in Information Technology, such as big data analytics methodologies, have the potential to be highly transformative

    The abundances of constituents of Titan's atmosphere from the GCMS instrument on the Huygens probe

    Full text link
    Saturn's largest moon, Titan, remains an enigma, explored only by remote sensing from Earth, and by the Voyager and Cassini spacecraft. The most puzzling aspects include the origin of the molecular nitrogen and methane in its atmosphere, and the mechanism(s) by which methane is maintained in the face of rapid destruction by photolysis. The Huygens probe, launched from the Cassini spacecraft, has made the first direct observations of the satellite's surface and lower atmosphere. Here we report direct atmospheric measurements from the Gas Chromatograph Mass Spectrometer (GCMS), including altitude profiles of the constituents, isotopic ratios and trace species ( including organic compounds). The primary constituents were confirmed to be nitrogen and methane. Noble gases other than argon were not detected. The argon includes primordial Ar-36, and the radiogenic isotope Ar-40, providing an important constraint on the outgassing history of Titan. Trace organic species, including cyanogen and ethane, were found in surface measurements.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/62703/1/nature04122.pd

    KOSMOS and COSMOS: New facility instruments for the NOAO 4-meter telescopes

    Full text link
    We describe the design, construction and measured performance of the Kitt Peak Ohio State Multi-Object Spectrograph (KOSMOS) for the 4-m Mayall telescope and the Cerro Tololo Ohio State Multi-Object Spectrograph (COSMOS) for the 4-m Blanco telescope. These nearly identical imaging spectrographs are modified versions of the OSMOS instrument; they provide a pair of new, high-efficiency instruments to the NOAO user community. KOSMOS and COSMOS may be used for imaging, long-slit, and multi-slit spectroscopy over a 100 square arcminute field of view with a pixel scale of 0.29 arcseconds. Each contains two VPH grisms that provide R~2500 with a one arcsecond slit and their wavelengths of peak diffraction efficiency are approximately 510nm and 750nm. Both may also be used with either a thin, blue-optimized CCD from e2v or a thick, fully depleted, red-optimized CCD from LBNL. These instruments were developed in response to the ReSTAR process. KOSMOS was commissioned in 2013B and COSMOS was commissioned in 2014A.Comment: SPIE 2014 Astronomical Telescopes + Instrumentation, Proc. SPIE 9147-3
    corecore