4,261 research outputs found

    The Next WTO Round on Agriculture and EU Enlargement: Pressures on the EU Dairy Sector

    Get PDF
    The EU dairy sector will be one of the most sensitive sectors to be affected by the outcome of the on-going negotiations for the new WTO round for agriculture. Nevertheless, if the Next WTO Round is going to be along the same lines as the Uruguay Round, the EU may be able to stay within the WTO commitments for export subsidy in the dairy sector without further reforms in the Common Agricultural Policy. Certainly, some minor reforms are needed to relieve the binding commitments for cheese and other milk products. The upcoming reform in the dairy sector under Agenda 2000 starting from year 2005 may help in reforming the dairy sector for the new round. In contrast, a steeper reduction in the export subsidy commitments compared to the Uruguay Round may cause problems for cheese and other milk products because the majority of exports in these products will have to be exported without any export subsidy. After enlargement, in particular with a steeper reduction formula, the EU may face troubles in the categories of butter, skim milk powder, cheese, and other milk products. The reforms under Agenda 2000 may not be sufficient because the difference between the EU internal market price and world market price is still too high for EU dairy products to allow unsubsidised exports to the world market. The EU internal market will have to absorb the dairy products intended for the export market. Consequently, the EU internal market for dairy products will be under pressure for further price reduction, and the EU world market share in dairy products will shrink.EU, WTO, enlargement, dairy sector, export subsidy, International Relations/Trade,

    Moduli Stabilization in Type IIB Flux Compactifications

    Full text link
    In the present paper, we reexamine the moduli stabilization problem of the Type IIB orientifolds with one complex structure modulus in a modified two-step procedure. The full superpotential including both the 3-form fluxes and the non-perturbative corrections is used to yield a F-term potential. This potential is simplified by using one optimization condition to integrate the dilaton field out. It is shown that having a locally stable supersymmetric Anti-deSitter vacuum is not inevitable for these orientifolds, which depend strongly upon the details of the flux parameters. For those orientifolds that have stable/metastable supersymmetry-broken minima of the F-term potential, the deSitter vacua might emerge even without the inclusion of the uplifting contributions.Comment: 10 pages, LaTeX2e style. The paper is rewritten in ver3 with more references adde

    The Effects of China's Tariff Reductions on EU Agricultural Exports

    Get PDF
    China's accession to the WTO means significant increases in export opportunities for China's trading partners. This study attempts to identify and measure quantitatively the effects of changing economic environment and trade policies on China's agricultural imports from the European Union (EU). The approach is to estimate demand functions for China's agri-food imports from the EU using semi-annual data from 1980 to 2000. The demand functions are used to measure the impacts of relative-price and trade policy changes on EU agricultural exports to China. The results suggest that in China, there is a relatively strong demand response for agrifood imports to changes in income and prices. Furthermore, the results indicate that relative-price variations affect significantly the export market shares of the EU. Trade liberalisation in the form of tariff reductions is found to be relatively significant in changing the quantity of agri-food imports demand from China.China, WTO, agricultural trade, tariffs, demand functions, estimation, International Relations/Trade,

    NMR Investigation of the Low Temperature Dynamics of solid 4He doped with 3He impurities

    Full text link
    The lattice dynamics of solid 4He has been explored using pulsed NMR methods to study the motion of 3He impurities in the temperature range where experiments have revealed anomalies attributed to superflow or unexpected viscoelastic properties of the solid 4He lattice. We report the results of measurements of the nuclear spin-lattice and spin-spin relaxation times that measure the fluctuation spectrum at high and low frequencies, respectively, of the 3He motion that results from quantum tunneling in the 4He matrix. The measurements were made for 3He concentrations 16<x_3<2000 ppm. For 3He concentrations x_3 = 16 ppm and 24 ppm, large changes are observed for both the spin-lattice relaxation time T_1 and the spin-spin relaxation time T_2 at temperatures close to those for which the anomalies are observed in measurements of torsional oscillator responses and the shear modulus. These changes in the NMR relaxation rates were not observed for higher 3He concentrations.Comment: 23 pages, 10 figure

    Optimization on fresh outdoor air ratio of air conditioning system with stratum ventilation for both targeted indoor air quality and maximal energy saving

    Get PDF
    Stratum ventilation can energy efficiently provide good inhaled indoor air quality with a proper operation (e.g., fresh outdoor air ratio). However, the non-uniform CO2 distribution in a stratum-ventilated room challenges the provision of targeted indoor air quality. This study proposes an optimization on the fresh outdoor air ratio of stratum ventilation for both the targeted indoor air quality and maximal energy saving. A model of CO2 concentration in the breathing zone is developed by coupling CO2 removal efficiency in the breathing zone and mass conservation laws. With the developed model, the ventilation parameters corresponding to different fresh outdoor air ratios are quantified to achieve the targeted indoor air quality (i.e., targeted CO2 concentration in the breathing zone). Using the fresh outdoor air ratios and corresponding ventilation parameters as inputs, energy performance evaluations of the air conditioning system are conducted by building energy simulations. The fresh outdoor air ratio with the minimal energy consumption is determined as the optimal one. Experiments show that the mean absolute error of the developed model of CO2 concentration in the breathing zone is 1.9%. The effectiveness of the proposed optimization is demonstrated using TRNSYS that the energy consumption of the air conditioning system with stratum ventilation is reduced by 6.4% while achieving the targeted indoor air quality. The proposed optimization is also promising for other ventilation modes for targeted indoor air quality and improved energy efficiency

    Global Food Production under Alternative Scenarios

    Get PDF
    global food production, agriculture trade liberalisation, climate policy, EU agricultural subsidies, economic recession, Agribusiness, Q17, Q18, Q54,

    Heat removal efficiency of stratum ventilation for air-side modulation

    Get PDF
    Stratum ventilation has significant thermal non-uniformity between the occupied and upper zones. Although the non-uniformity benefits indoor air quality and energy efficiency, it increases complexities and difficulties in the air-side modulation. In this study, a heat removal efficiency (HRE) model is first established and validated, and then used for the air-side modulation. The HRE model proposed is a function of supply air temperature, supply airflow rate and cooling load. The HRE model proposed has been proven to be applicable to stratum ventilation and displacement ventilation for different room geometries and air terminal configurations, with errors generally within ±5% and a mean absolute error less than 4% for thirty-three experimental cases and five simulated cases. Investigations into the air-side modulation with the proposed HRE model reveal that for both the typical stratum-ventilated classroom and office, the variable-air-volume system can serve a wider range of cooling load than the constant-air-volume system. The assumption of a constant HRE used in the conventional method could lead to errors in the room temperature prediction up to ±1.3 °C, thus the proposed HRE model is important to the air-side modulation for thermal comfort. An air-side modulation method is proposed based on the HRE model to maximize the HRE for improving energy efficiency while maintaining thermal comfort. Results show that the HRE model based air-side modulation can improve the energy efficiency of stratum ventilation up to 67.3%. The HRE model based air-side modulation is also promising for displacement ventilation

    Low-momentum interactions with Brown-Rho-Ericson scalings and the density dependence of the nuclear symmetry energy

    Full text link
    We have calculated the nuclear symmetry energy Esym(ρ)E_{sym}(\rho) up to densities of 45ρ04 \sim 5 \rho_0 with the effects from the Brown-Rho (BR) and Ericson scalings for the in-medium mesons included. Using the VlowkV_{low-k} low-momentum interaction with and without such scalings, the equations of state (EOS) of symmetric and asymmetric nuclear matter have been calculated using a ring-diagarm formalism where the particle-particle-hole-hole ring diagrams are included to all orders. The EOS for symmetric nuclear matter and neutron matter obtained with linear BR scaling are both overly stiff compared with the empirical constraints of Danielewicz {\it et al.} \cite{daniel02}. In contrast, satisfactory results are obtained by either using the nonlinear Ericson scaling or by adding a Skyrme-type three-nucleon force (TNF) to the unscaled VlowkV_{low-k} interaction. Our results for Esym(ρ)E_{sym}(\rho) obtained with the nonlinear Ericson scaling are in good agreement with the empirical values of Tsang {\it et al.} \cite{tsang09} and Li {\it et al.} \cite{li05}, while those with TNF are slightly below these values. For densities below the nuclear saturation density ρ0\rho_0, the results of the above calculations are nearly equivalent to each other and all in satisfactory agreement with the empirical values.Comment: 7 pages, 6 figure
    corecore