738 research outputs found
New Insights Into the Regulation of Natural-Killer Group 2 Member D (NKG2D) and NKG2D-Ligands: Endoplasmic Reticulum Stress and CEA-Related Cell Adhesion Molecule 1
Natural-killer group 2 member D (NKG2D) is a well-characterized activating receptor expressed by natural killer (NK) cells, NKT cells, activated CD8+ T cells, subsets of γδ+ T cells, and innate-like T cells. NKG2D recognizes multiple ligands (NKG2D-ligands) to mount an innate immune response against stressed, transformed or infected cells. NKG2D-ligand surface expression is tightly restricted on healthy cells through transcriptional and post-transcriptional mechanisms, while transformed or infected cells express the ligands as a danger signal. Recent studies have revealed that unfolded protein response (UPR) pathways during endoplasmic reticulum (ER) stress result in up-regulation of ULBP-related protein via the PERK-ATF4-CHOP pathway, which can be linked to the pathogenesis of autoimmune diseases. Transformed cells however possess mechanisms to escape NKG2D-mediated immune surveillance, such as upregulation of carcinoembryonic antigen (CEA)-related cell adhesion molecule 1 (CEACAM1), a negative regulator of NKG2D-ligands. In this review, we discuss mechanisms of NKG2D-ligand regulation, with a focus on newly discovered mechanisms that promote NKG2D-ligand expression on epithelial cells, including ER stress, and mechanisms that suppress NKG2D-ligand mediated killing of cancer cells, namely by co-expression of CEACAM1.Wellcome Trust Senior Investigator Award 106260/Z/14/Z, the European Research Council HORIZON2020/ERC grant no. 648889 (A.K.
Magnetization reversal driven by spin-injection : a mesoscopic spin-transfer effect
A mesoscopic description of spin-transfer effect is proposed, based on the
spin-injection mechanism occurring at the junction with a ferromagnet. The
effect of spin-injection is to modify locally, in the ferromagnetic
configuration space, the density of magnetic moments. The corresponding
gradient leads to a current-dependent diffusion process of the magnetization.
In order to describe this effect, the dynamics of the magnetization of a
ferromagnetic single domain is reconsidered in the framework of the
thermokinetic theory of mesoscopic systems. Assuming an Onsager
cross-coefficient that couples the currents, it is shown that spin-dependent
electric transport leads to a correction of the Landau-Lifshitz-Gilbert
equation of the ferromagnetic order parameter with supplementary diffusion
terms. The consequence of spin-injection in terms of activation process of the
ferromagnet is deduced, and the expressions of the effective energy barrier and
of the critical current are derived. Magnetic fluctuations are calculated: the
correction to the fluctuations is similar to that predicted for the activation.
These predictions are consistent with the measurements of spin-transfer
obtained in the activation regime and for ferromagnetic resonance under
spin-injection.Comment: 20 pages, 2 figure
New Insights Into the Regulation of Natural-Killer Group 2 Member D (NKG2D) and NKG2D-Ligands: Endoplasmic Reticulum Stress and CEA-Related Cell Adhesion Molecule 1
Natural-killer group 2 member D (NKG2D) is a well-characterized activating receptor expressed by natural killer (NK) cells, NKT cells, activated CD8+ T cells, subsets of γδ+ T cells, and innate-like T cells. NKG2D recognizes multiple ligands (NKG2D-ligands) to mount an innate immune response against stressed, transformed, or infected cells. NKG2D-ligand surface expression is tightly restricted on healthy cells through transcriptional and post-transcriptional mechanisms, while transformed or infected cells express the ligands as a danger signal. Recent studies have revealed that unfolded protein response pathways during endoplasmic reticulum (ER) stress result in upregulation of ULBP-related protein via the protein kinase RNA-like ER kinase-activating factor 4-C/EBP homologous protein (PERK-ATF4-CHOP) pathway, which can be linked to the pathogenesis of autoimmune diseases. Transformed cells, however, possess mechanisms to escape NKG2D-mediated immune surveillance, such as upregulation of carcinoembryonic antigen (CEA)-related cell adhesion molecule 1 (CEACAM1), a negative regulator of NKG2D-ligands. In this review, we discuss mechanisms of NKG2D-ligand regulation, with a focus on newly discovered mechanisms that promote NKG2D-ligand expression on epithelial cells, including ER stress, and mechanisms that suppress NKG2D-ligand-mediated killing of cancer cells, namely by co-expression of CEACAM1
Observation of Spin-Dependent Charge Symmetry Breaking in Interaction: Gamma-Ray Spectroscopy of He
The energy spacing between the ground-state spin doublet of He(1,0) was determined to be keV, by measuring
rays for the transition with a high efficiency germanium
detector array in coincidence with the He He
reaction at J-PARC. In comparison to the corresponding energy spacing in the
mirror hypernucleus H, the present result clearly indicates the
existence of charge symmetry breaking (CSB) in interaction. It is
also found that the CSB effect is large in the ground state but is by one
order of magnitude smaller in the excited state, demonstrating that the
CSB interaction has spin dependence
- …