9 research outputs found

    Effect of the Photodynamic Therapy Applications with Potent Microalgae Constituents on Several Types of Tumor

    Get PDF
    Background In recent years, microalgae (MA) have attracted much interest considering their possible therapeutic application. They contain active natural compounds or derivatives (extracts, pure or chemically modified compounds) that have increasing applications in the pharmaceutical industry. Methods The present study aims to examine microalgae for new photosensitizers, with a potential to be used in the light-associated treatment of tumors. Semi-purified extracts of several microalgae strains were evaluated as photosensitizers for photodynamic therapy (PDT) applications. Four tumor cell lines (A549, LNCap, MCF-7, and MDA-MB 435) were used to assess 34 samples extracted by three methods: cellulase enzyme, lysozyme enzyme and ultra-sonication. The fluorescence measurements and the recorded images alongside the spectral intensities between 650–800 nm wavelengths provided characteristic features to some of the contents of the examined extracts. Results Several microalgae constituents activated by blue light (BL), red light (RL) or both (in sequence) exhibited significant effects on the viability of the tumor cell lines, decreasing it as much as 95% for certain MA constituents. Majority of the MA constituents showed a higher phototoxicity after exposure to both blue and red lights than the photo-induced toxicity when exposed to a single light source. The viability of the tumor cells exhibited the dose dependent response with the MA constituents. Conclusion The results clearly showed that MA constituents are potential photosensitizers that have a significant photo-damage effects on the tested cancer cells

    Effect of Enzymatic pre-treatment of microalgae extracts on their anti-tumor activity

    No full text
    Background There is an increasing need to find natural bioactive compounds for pharmaceutical applications, because they have less harmful side effects compared to their chemical alternatives. Microalgae (MA) have been identified as a promising source for these bioactive compounds, and this work aimed to evaluate the anti-proliferative effects of semi-purified protein extracted from MA against several tumor cell lines. Methods Tested samples comprised MA cell extracts treated with cellulase and lysozyme, prior to extraction. The effect of dialysis, required to remove unnecessary small molecules, was also tested. The anti-cancer efficacies of the dialyzed and undialyzed extracts were determined by measuring cell viability after treating four human cancer cell lines, specifically A549 (human lung carcinoma), MCF-7 (human breast adenocarcinoma), MDA MB-435 (human melanoma), and LNCap (human prostate cancer cells derived from a metastatic site in the lymph node). This was compared to the effects of the agents on the human BPH-1 cell line (benign human prostate epithelial cells). The t-test was used to statistically analyze the results and determine the significance. Results Against LNCap and A549 cells, the performance of cellulase-treated extracts was better (with p-values < 0.05, as compared to the control) than that of lysozyme-treated preparations (with p-values mainly > 0.05, as compared to the control); however, they had similar effects against the other two tumor cell lines (with p-values mainly < 0.05, as compared to the control). Moreover, based on their effect on BPH-1 cells, extracts from lysozyme-treated MA cells were determined to be safer against the benign prostate hyperplasia cells, BPH-1 (with p-values mainly > 0.05, as compared to the control). After dialysis, the performance of MA extracts from lysozyme-treated cells was enhanced significantly (with p-values dropping to < 0.05, as compared to the control). Conclusions The results of this work provide important information and could provide the foundation for further research to incorporate MA constituents into pharmaceutical anti-cancer therapeutic formulations

    Controlling Regiospecific Oxidation of Aromatics and the Degradation of Chlorinated Aliphatics via Active Site Engineering of Toluene Monooxygenases

    No full text
    corecore