156 research outputs found

    Triaxial quadrupole deformation dynamics in sd-shell nuclei around 26Mg

    Full text link
    Large-amplitude dynamics of axial and triaxial quadrupole deformation in 24,26Mg, 24Ne, and 28Si is investigated on the basis of the quadrupole collective Hamiltonian constructed with use of the constrained Hartree-Fock-Bogoliubov plus the local quasiparticle random phase approximation method. The calculation reproduces well properties of the ground rotational bands, and beta and gamma vibrations in 24Mg and 28Si. The gamma-softness in the collective states of 26Mg and 24Ne are discussed. Contributions of the neutrons and protons to the transition properties are also analyzed in connection with the large-amplitude quadrupole dynamics.Comment: 16 pages, 18 figures, submitted to Phys. Rev.

    Microscopic description of large-amplitude shape-mixing dynamics with inertial functions derived in local quasiparticle random-phase approximation

    Full text link
    On the basis of the adiabatic self-consistent collective coordinate method, we develop an efficient microscopic method of deriving the five-dimensional quadrupole collective Hamiltonian and illustrate its usefulness by applying it to the oblate-prolate shape coexistence/mixing phenomena in proton-rich 68,70,72Se. In this method, the vibrational and rotational collective masses (inertial functions) are determined by local normal modes built on constrained Hartree-Fock-Bogoliubov states. Numerical calculations are carried out using the pairing-plus-quadrupole Hamiltonian including the quadrupole-pairing interaction. It is shown that the time-odd components of the moving mean-field significantly increase the vibrational and rotational collective masses in comparison with the Inglis-Belyaev cranking masses. Solving the collective Schroedinger equation, we evaluate excitation spectra, quadrupole transitions and moments. Results of the numerical calculation are in excellent agreement with recent experimental data and indicate that the low-lying states of these nuclei are characterized as an intermediate situation between the oblate-prolate shape coexistence and the so-called gamma unstable situation where large-amplitude triaxial-shape fluctuations play a dominant role.Comment: 17 pages, 16 figures, Submitted to Phys. Rev.

    901-21 Percutaneous Vascular Surgery: Suture Mediated Percutaneous Closure of Femoral Artery Access Site Following Coronary Intervention

    Get PDF
    A new device (prostarTm, Perclose, Inc.) was developed to close femoral artery access sites percutaneously following coronary interventions in fully anticoagulated patients. The catheter deploys four needles with two pairs of sutures around the hole of femoral artery access sites. The sutures are then tied to close the arteriotomy site mechanically to achieve immediate hemostasis. As a pilot phase, the device was tested in six centers. The device was used immediately following coronary intervention in 91 access sites. Despite an average ACT at the time of the procedure of >300 seconds, immediate complete hemostasis was achieved in 82 sites (90%). The devices were not appropriately positioned in 8 cases and procedures were aborted followed by reinsertion of a sheath or manual compression. Two patients (2.2%) required surgical repair of the femoral artery; one with device mechanical failure and one with bleeding from the initial puncture site in the posterior wall despite successful closure of the sheath site in the front wall. There were no AV fistulae or pseudoaneurysms requiring surgery and no infection, distal embolism or need for blood transfusion.In conclusion, this pilot study suggests that this suture mediated closure device appears to provide safe and effective hemostasis at the femoral access site in fully anticoagulated patients following coronary interventions

    Six sequence variants on chromosome 9p21.3 are associated with a positive family history of myocardial infarction: a multicenter registry

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Recent genome-wide association studies have identified several genetic loci linked to coronary artery disease (CAD) and myocardial infarction (MI). The 9p21.3 locus was verified by numerous replication studies to be the first common locus for CAD and MI. In the present study, we investigated whether six single nucleotide polymorphisms (SNP) rs1333049, rs1333040, rs10757274, rs2383206, rs10757278, and rs2383207 representing the 9p21.3 locus were associated with the incidence of an acute MI in patients with the main focus on the familial aggregation of the disease.</p> <p>Methods</p> <p>The overall cohort consisted of 976 unrelated male patients presenting with an acute coronary syndrome (ACS) with ST-elevated (STEMI) as well as non-ST-elevated myocardial infarction (NSTEMI). Genotyping data of the investigated SNPs were generated and statistically analyzed in comparison to previously published findings of matchable control cohorts.</p> <p>Results</p> <p>Statistical evaluation confirmed a highly significant association of all analyzed SNP's with the occurrence of MI (p < 0.0001; OR: 1.621-2.039). When only MI patients with a positive family disposition were comprised in the analysis a much stronger association of the accordant risk alleles with incident disease was found with odds ratios up to 2.769.</p> <p>Conclusions</p> <p>The findings in the present study confirmed a strong association of the 9p21.3 locus with MI particularly in patients with a positive family history thereby, emphasizing the pathogenic relevance of this locus as a common genetic cardiovascular risk factor.</p

    The nuclear energy density functional formalism

    Full text link
    The present document focuses on the theoretical foundations of the nuclear energy density functional (EDF) method. As such, it does not aim at reviewing the status of the field, at covering all possible ramifications of the approach or at presenting recent achievements and applications. The objective is to provide a modern account of the nuclear EDF formalism that is at variance with traditional presentations that rely, at one point or another, on a {\it Hamiltonian-based} picture. The latter is not general enough to encompass what the nuclear EDF method represents as of today. Specifically, the traditional Hamiltonian-based picture does not allow one to grasp the difficulties associated with the fact that currently available parametrizations of the energy kernel E[g,g]E[g',g] at play in the method do not derive from a genuine Hamilton operator, would the latter be effective. The method is formulated from the outset through the most general multi-reference, i.e. beyond mean-field, implementation such that the single-reference, i.e. "mean-field", derives as a particular case. As such, a key point of the presentation provided here is to demonstrate that the multi-reference EDF method can indeed be formulated in a {\it mathematically} meaningful fashion even if E[g,g]E[g',g] does {\it not} derive from a genuine Hamilton operator. In particular, the restoration of symmetries can be entirely formulated without making {\it any} reference to a projected state, i.e. within a genuine EDF framework. However, and as is illustrated in the present document, a mathematically meaningful formulation does not guarantee that the formalism is sound from a {\it physical} standpoint. The price at which the latter can be enforced as well in the future is eventually alluded to.Comment: 64 pages, 8 figures, submitted to Euroschool Lecture Notes in Physics Vol.IV, Christoph Scheidenberger and Marek Pfutzner editor

    Chiasmata Promote Monopolar Attachment of Sister Chromatids and Their Co-Segregation toward the Proper Pole during Meiosis I

    Get PDF
    The chiasma is a structure that forms between a pair of homologous chromosomes by crossover recombination and physically links the homologous chromosomes during meiosis. Chiasmata are essential for the attachment of the homologous chromosomes to opposite spindle poles (bipolar attachment) and their subsequent segregation to the opposite poles during meiosis I. However, the overall function of chiasmata during meiosis is not fully understood. Here, we show that chiasmata also play a crucial role in the attachment of sister chromatids to the same spindle pole and in their co-segregation during meiosis I in fission yeast. Analysis of cells lacking chiasmata and the cohesin protector Sgo1 showed that loss of chiasmata causes frequent bipolar attachment of sister chromatids during anaphase. Furthermore, high time-resolution analysis of centromere dynamics in various types of chiasmate and achiasmate cells, including those lacking the DNA replication checkpoint factor Mrc1 or the meiotic centromere protein Moa1, showed the following three outcomes: (i) during the pre-anaphase stage, the bipolar attachment of sister chromatids occurs irrespective of chiasma formation; (ii) the chiasma contributes to the elimination of the pre-anaphase bipolar attachment; and (iii) when the bipolar attachment remains during anaphase, the chiasmata generate a bias toward the proper pole during poleward chromosome pulling that results in appropriate chromosome segregation. Based on these results, we propose that chiasmata play a pivotal role in the selection of proper attachments and provide a backup mechanism that promotes correct chromosome segregation when improper attachments remain during anaphase I

    Genetic Testing for Early Detection of Individuals at Risk of Coronary Heart Disease and Monitoring Response to Therapy: Challenges and Promises

    Get PDF
    Coronary heart disease (CHD) often presents suddenly with little warning. Traditional risk factors are inadequate to identify the asymptomatic high-risk individuals. Early identification of patients with subclinical coronary artery disease using noninvasive imaging modalities would allow the early adoption of aggressive preventative interventions. Currently, it is impractical to screen the entire population with noninvasive coronary imaging tools. The use of relatively simple and inexpensive genetic markers of increased CHD risk can identify a population subgroup in which benefit of atherosclerotic imaging modalities would be increased despite nominal cost and radiation exposure. Additionally, genetic markers are fixed and need only be measured once in a patient’s lifetime, can help guide therapy selection, and may be of utility in family counseling
    corecore