71 research outputs found
Impact of Human Management on the Genetic Variation of Wild Pepper, Capsicum annuum var. glabriusculum
Management of wild peppers in Mexico has occurred for a long time without clear phenotypic signs of domestication. However, pre-domestication management could have implications for the population's genetic richness. To test this hypothesis we analysed 27 wild (W), let standing (LS) and cultivated (C) populations, plus 7 samples from local markets (LM), with nine polymorphic microsatellite markers. Two hundred and fifty two alleles were identified, averaging 28 per locus. Allele number was higher in W, and 15 and 40% less in LS and C populations, respectively. Genetic variation had a significant population structure. In W populations, structure was associated with ecological and geographic areas according to isolation by distance. When LM and C populations where included in the analysis, differentiation was no longer apparent. Most LM were related to distant populations from Sierra Madre Oriental, which represents their probable origin. Historical demography shows a recent decline in all W populations. Thus, pre-domestication human management is associated with a significant reduction of genetic diversity and with a loss of differentiation suggesting movement among regions by man. Measures to conserve wild and managed populations should be implemented to maintain the source and the architecture of genetic variation in this important crop relative
XMM-Newton investigations of the Lambda Orionis star-forming region (XILO). I. The young cluster Collinder 69
This is the first paper of a series devoted to the Lambda Orionis
star-forming region, from the X-ray perspective, which will provide a
comprehensive view of this complex region. In this paper we focus in uncovering
the population of the central, young cluster Collinder 69 (C69), and in
particular those diskless members not identified by previous near- and
mid-infrared surveys, and to establish the X-ray luminosity function for the
association. We have combined two exposures taken with the XMM-Newton satellite
with an exhaustive data set of optical, near- and mid-infrared photometry to
assess the membership of the X-ray sources based on color-color and
color-magnitude diagrams, as well as other properties, such as effective
temperatures, masses and bolometric luminosities.
We detected a total of 164 X-ray sources, of which 66 are probable and
possible cluster members. A total of 16 are newly identified probable members.
The two XMM-Newton pointings east and west of the cluster center have allowed
us to verify the heterogeneous spatial distribution of young stars, probably
related to the large scale structure of the region. The disk fraction of the
X-ray detected cluster sample is very low, close to 10%, in remarkable contrast
to the low-mass stellar and substellar population (mostly undetected in X-rays)
where the disk fraction reaches about 50%. The X-ray luminosity function of C69
provides support for an age of several Myr when compared with other well known
young associations. With our improved cluster census we confirm previous
reports on the untypically low disk fraction compared to other clusters of
several Myr age. The different disk fractions of X-ray detected (essentially
solar-like) and undetected (mostly low-mass stars and brown dwarfs) members can
be understood as a consequence of a mass-dependence of the time-scale for disk
evolution.Comment: 38 pages, 16 figure
Genomic and biological characterization of chiltepin yellow mosaic virus, a new tymovirus infecting Capsicum annuum var. aviculare in Mexico.
The characterization of viruses infecting wild plants is a key step towards understanding the ecology of plant viruses. In this work, the complete genomic nucleotide sequence of a new tymovirus species infecting chiltepin, the wild ancestor of Capsicum annuum pepper crops, in Mexico was determined, and its host range has been explored. The genome of 6,517 nucleotides has the three open reading frames described for tymoviruses, putatively encoding an RNA-dependent RNA polymerase, a movement protein and a coat protein. The 5′ and 3′ untranslated regions have structures with typical signatures of the tymoviruses. Phylogenetic analyses revealed that this new virus is closely related to the other tymoviruses isolated from solanaceous plants. Its host range is mainly limited to solanaceous species, which notably include cultivated Capsicum species. In the latter, infection resulted in a severe reduction of growth, indicating the potential of this virus to be a significant crop pathogen. The name of chiltepin yellow mosaic virus (ChiYMV) is proposed for this new tymovirus
Effect of Biodiversity Changes in Disease Risk: Exploring Disease Emergence in a Plant-Virus System
The effect of biodiversity on the ability of parasites to infect their host and cause disease (i.e. disease risk) is a major question in pathology, which is central to understand the emergence of infectious diseases, and to develop strategies for their management. Two hypotheses, which can be considered as extremes of a continuum, relate biodiversity to disease risk: One states that biodiversity is positively correlated with disease risk (Amplification Effect), and the second predicts a negative correlation between biodiversity and disease risk (Dilution Effect). Which of them applies better to different host-parasite systems is still a source of debate, due to limited experimental or empirical data. This is especially the case for viral diseases of plants. To address this subject, we have monitored for three years the prevalence of several viruses, and virus-associated symptoms, in populations of wild pepper (chiltepin) under different levels of human management. For each population, we also measured the habitat species diversity, host plant genetic diversity and host plant density. Results indicate that disease and infection risk increased with the level of human management, which was associated with decreased species diversity and host genetic diversity, and with increased host plant density. Importantly, species diversity of the habitat was the primary predictor of disease risk for wild chiltepin populations. This changed in managed populations where host genetic diversity was the primary predictor. Host density was generally a poorer predictor of disease and infection risk. These results support the dilution effect hypothesis, and underline the relevance of different ecological factors in determining disease/infection risk in host plant populations under different levels of anthropic influence. These results are relevant for managing plant diseases and for establishing conservation policies for endangered plant species
HE-LHC: The High-Energy Large Hadron Collider – Future Circular Collider Conceptual Design Report Volume 4
In response to the 2013 Update of the European Strategy for Particle Physics (EPPSU), the Future Circular Collider (FCC) study was launched as a world-wide international collaboration hosted by CERN. The FCC study covered an energy-frontier hadron collider (FCC-hh), a highest-luminosity high-energy lepton collider (FCC-ee), the corresponding 100 km tunnel infrastructure, as well as the physics opportunities of these two colliders, and a high-energy LHC, based on FCC-hh technology. This document constitutes the third volume of the FCC Conceptual Design Report, devoted to the hadron collider FCC-hh. It summarizes the FCC-hh physics discovery opportunities, presents the FCC-hh accelerator design, performance reach, and staged operation plan, discusses the underlying technologies, the civil engineering and technical infrastructure, and also sketches a possible implementation. Combining ingredients from the Large Hadron Collider (LHC), the high-luminosity LHC upgrade and adding novel technologies and approaches, the FCC-hh design aims at significantly extending the energy frontier to 100 TeV. Its unprecedented centre-of-mass collision energy will make the FCC-hh a unique instrument to explore physics beyond the Standard Model, offering great direct sensitivity to new physics and discoveries
Neumáticos fuera de uso: una carga sostenible para el desarrollo de nuevos elastómeros con capacidad autorreparadora
La revalorización de los residuos plásticos, y
en concreto de los residuos de neumáticos,
supone generar un nuevo ciclo de vida útil a
estos materiales reduciendo así la generación
de desechos. Dicha revalorización ha supuesto, generalmente, el desarrollo de materiales
de bajo valor añadido y poco atractivos comercialmente. En este trabajo, por el contrario, se busca aportar un alto valor añadido a
dichos residuos mediante su empleo en elastómeros inteligentes con capacidad autorreparadora. La funcionalización e incorporación
de polvo de neumático fuera de uso (GTR) ha
permitido aumentar la capacidad de reparación de un caucho nitrilo carboxilado de un 20
a un 70% mediante la formación de entrecruzamientos iónicos reversibles.Los autores agradecen al Ministerio de Ciencia, Innovación y Universidades del Gobierno
de España por el contrato de investigación
(Los autores agradecen al Ministerio de Ciencia, Innovación y Universidades del Gobierno
de España por el contrato de investigación
(PID2019-107501RB-I00), M. Hernández
Santana por un contrato Ramón y Cajal (RYC2017-22837) y S. Utrera-Barrios por un contrato predoctoral (PIE-202060E183). R. Verdugo Manzanares agradece a la Comunidad
de Madrid por un contrato como ayudante de
investigación (PEJ 2019-AI/IND-1635). Los
autores agradecen a Arlanxeo por proporcionar el XNBR y a Signus Ecovalor por el GTR.), M. Hernández
Santana por un contrato Ramón y Cajal (RYC2017-22837) y S. Utrera-Barrios por un contrato predoctoral (PIE-202060E183). R. Verdugo Manzanares agradece a la Comunidad
de Madrid por un contrato como ayudante de
investigación (PEJ 2019-AI/IND-1635). Los
autores agradecen a Arlanxeo por proporcionar el XNBR y a Signus Ecovalor por el GTR
- …