39 research outputs found

    Suspended sediment modeling using a heuristic regression method hybridized with kmeans clustering

    Get PDF
    The accurate estimation of suspended sediments (SSs) carries significance in determining the volume of dam storage, river carrying capacity, pollution susceptibility, soil erosion potential, aquatic ecological impacts, and the design and operation of hydraulic structures. The presented study proposes a new method for accurately estimating daily SSs using antecedent discharge and sediment information. The novel method is developed by hybridizing the multivariate adaptive regression spline (MARS) and the Kmeans clustering algorithm (MARS–KM). The proposed method’s efficacy is established by comparing its performance with the adaptive neuro-fuzzy system (ANFIS), MARS, and M5 tree (M5Tree) models in predicting SSs at two stations situated on the Yangtze River of China, according to the three assessment measurements, RMSE, MAE, and NSE. Two modeling scenarios are employed; data are divided into 50–50% for model training and testing in the first scenario, and the training and test data sets are swapped in the second scenario. In Guangyuan Station, the MARS–KM showed a performance improvement compared to ANFIS, MARS, and M5Tree methods in term of RMSE by 39%, 30%, and 18% in the first scenario and by 24%, 22%, and 8% in the second scenario, respectively, while the improvement in RMSE of ANFIS, MARS, and M5Tree was 34%, 26%, and 27% in the first scenario and 7%, 16%, and 6% in the second scenario, respectively, at Beibei Station. Additionally, the MARS–KM models provided much more satisfactory estimates using only discharge values as inputs

    Seasonal Short‐Term Prediction of Dissolved Oxygen in Rivers via Nature‐Inspired Algorithms

    Full text link
    This study challenges the use of three nature-inspired algorithms as learning frameworks of the adaptive-neuro-fuzzy inference system (ANFIS) machine learning model for short-term modeling of dissolved oxygen (DO) concentrations. Particle swarm optimization (PSO), butterfly optimization algorithm (BOA), and biogeography-based optimization (BBO) are employed for developing predictive ANFIS models using seasonal 15 min data collected from the Rock Creek River in Washington, DC. Four independent variables are used as model inputs including water temperature (T), river discharge (Q), specific conductance (SC), and pH. The Mallow's Cp and R2 parameters are used for choosing the best input parameters for the models. The models are assessed by several statistics such as the coefficient of determination (R2), root-mean-square error (RMSE), Nash–Sutcliffe efficiency, mean absolute error, and the percent bias. The results indicate that the performance of all-nature-inspired algorithms is close to each other. However, based on the calculated RMSE, they enhance the accuracy of standard ANFIS in the spring, summer, fall, and winter around 13.79%, 15.94%, 6.25%, and 12.74%, respectively. Overall, the ANFIS-PSO and ANFIS-BOA provide slightly better results than the other ANFIS models. </div
    corecore