247 research outputs found

    Climate change effects on human health: projections of temperature-related mortality for the UK during the 2020s, 2050s and 2080s

    Get PDF
    Background The most direct way in which climate change is expected to affect public health relates to changes in mortality rates associated with exposure to ambient temperature. Many countries worldwide experience annual heat-related and cold-related deaths associated with current weather patterns. Future changes in climate may alter such risks. Estimates of the likely future health impacts of such changes are needed to inform public health policy on climate change in the UK and elsewhere. Methods Time-series regression analysis was used to characterise current temperature-mortality relationships by region and age group. These were then applied to the local climate and population projections to estimate temperature-related deaths for the UK by the 2020s, 2050s and 2080s. Greater variability in future temperatures as well as changes in mean levels was modelled. Results A significantly raised risk of heat-related and cold-related mortality was observed in all regions. The elderly were most at risk. In the absence of any adaptation of the population, heat-related deaths would be expected to rise by around 257% by the 2050s from a current annual baseline of around 2000 deaths, and cold-related mortality would decline by 2% from a baseline of around 41 000 deaths. The cold burden remained higher than the heat burden in all periods. The increased number of future temperature-related deaths was partly driven by projected population growth and ageing. Conclusions Health protection from hot weather will become increasingly necessary, and measures to reduce cold impacts will also remain important in the UK. The demographic changes expected this century mean that the health protection of the elderly will be vital

    Vacuum Cherenkov radiation

    Full text link
    Within the classical Maxwell-Chern-Simons limit of the Standard-Model Extension (SME), the emission of light by uniformly moving charges is studied confirming the possibility of a Cherenkov-type effect. In this context, the exact radiation rate for charged magnetic point dipoles is determined and found in agreement with a phase-space estimate under certain assumptions.Comment: 4 pages, REVTeX

    Forces between electric charges in motion: Rutherford scattering, circular Keplerian orbits, action-at-a-distance and Newton's third law in relativistic classical electrodynamics

    Full text link
    Standard formulae of classical electromagnetism for the forces between electric charges in motion derived from retarded potentials are compared with those obtained from a recently developed relativistic classical electrodynamic theory with an instantaneous inter-charge force. Problems discussed include small angle Rutherford scattering, Jackson's recent `torque paradox' and circular Keplerian orbits. Results consistent with special relativity are obtained only with an instantaneous interaction. The impossiblity of stable circular motion with retarded fields in either classical electromagnetism or Newtonian gravitation is demonstrated.Comment: 26 pages, 5 figures. QED and special relativity forbid retarded electromagnetic forces. See also physics/0501130. V2 has typos corrected, minor text modifications and updated references. V3 has further typos removed and added text and reference

    Gravitoelectromagnetism in a complex Clifford algebra

    Full text link
    A linear vector model of gravitation is introduced in the context of quantum physics as a generalization of electromagnetism. The gravitoelectromagnetic gauge symmetry corresponds to a hyperbolic unitary extension of the usual complex phase symmetry of electromagnetism. The reversed sign for the gravitational coupling is obtained by means of the pseudoscalar of the underlying complex Clifford algebra.Comment: 10 pages Latex2

    Chaotic and pseudochaotic attractors of perturbed fractional oscillator

    Full text link
    We consider a nonlinear oscillator with fractional derivative of the order alpha. Perturbed by a periodic force, the system exhibits chaotic motion called fractional chaotic attractor (FCA). The FCA is compared to the ``regular'' chaotic attractor. The properties of the FCA are discussed and the ``pseudochaotic'' case is demonstrated.Comment: 20 pages, 7 figure

    Mach's principle: Exact frame-dragging via gravitomagnetism in perturbed Friedmann-Robertson-Walker universes with K=(±1,0)K = (\pm 1, 0)

    Full text link
    We show that the dragging of the axis directions of local inertial frames by a weighted average of the energy currents in the universe is exact for all linear perturbations of any Friedmann-Robertson-Walker (FRW) universe with K = (+1, -1, 0) and of Einstein's static closed universe. This includes FRW universes which are arbitrarily close to the Milne Universe, which is empty, and to the de Sitter universe. Hence the postulate formulated by E. Mach about the physical cause for the time-evolution of the axis directions of inertial frames is shown to hold in cosmological General Relativity for linear perturbations. The time-evolution of axis directions of local inertial frames (relative to given local fiducial axes) is given experimentally by the precession angular velocity of gyroscopes, which in turn is given by the operational definition of the gravitomagnetic field. The gravitomagnetic field is caused by cosmological energy currents via the momentum constraint. This equation for cosmological gravitomagnetism is analogous to Ampere's law, but it holds also for time-dependent situtations. In the solution for an open universe the 1/r^2-force of Ampere is replaced by a Yukawa force which is of identical form for FRW backgrounds with K=(1,0).K = (-1, 0). The scale of the exponential cutoff is the H-dot radius, where H is the Hubble rate, and dot is the derivative with respect to cosmic time. Analogous results hold for energy currents in a closed FRW universe, K = +1, and in Einstein's closed static universe.Comment: 23 pages, no figures. Final published version. Additional material in Secs. I.A, I.J, III, V.H. Additional reference

    Gravitomagnetism and the Clock Effect

    Get PDF
    The main theoretical aspects of gravitomagnetism are reviewed. It is shown that the gravitomagnetic precession of a gyroscope is intimately connected with the special temporal structure around a rotating mass that is revealed by the gravitomagnetic clock effect. This remarkable effect, which involves the difference in the proper periods of a standard clock in prograde and retrograde circular geodesic orbits around a rotating mass, is discussed in detail. The implications of this effect for the notion of ``inertial dragging'' in the general theory of relativity are presented. The theory of the clock effect is developed within the PPN framework and the possibility of measuring it via spaceborne clocks is examined.Comment: 27 pages, LaTeX, submitted to Proc. Bad Honnef Meeting on: GYROS, CLOCKS, AND INTERFEROMETERS: TESTING GENERAL RELATIVITY IN SPACE (22 - 27 August 1999; Bad Honnef, Germany

    Potential health impacts from sulphur dioxide and sulphate exposure in the UK resulting from an Icelandic effusive volcanic eruption

    Get PDF
    Ash, gases and particles emitted from volcanic eruptions cause disruption to air transport, but also have negative impacts on respiratory and cardiovascular health. Exposure to sulphur dioxide (SO2) and sulphate (SO4) aerosols increases the risk of mortality, and respiratory and cardiovascular hospital admissions. Ash and gases can be transported over large distances and are a potential public health risk. In 2014–15, the Bárðarbunga fissure eruption at Holuhraun, Iceland was associated with high emissions of SO2 and SO4, detected at UK monitoring stations. We estimated the potential impacts on the UK population from SO2 and SO4 associated with a hypothetical large fissure eruption in Iceland for mortality and emergency hospital admissions. To simulate the effects of different weather conditions, we used an ensemble of 80 runs from an atmospheric dispersion model to simulate SO2 and SO4 concentrations on a background of varying meteorology. We weighted the simulated exposure data by population, and quantified the potential health impacts that may result in the UK over a 6-week period following the start of an eruption. We found in the majority of cases, the expected number of deaths resulting from SO2 over a 6-week period total fewer than ~100 for each model run, and for SO4, in the majority of cases, the number totals fewer than ~200. However, the 6-week simulated period with the highest SO2 was associated with 313 deaths, and the period with the highest SO4 was associated with 826 deaths. The single 6-week period relating to the highest combined SO2 and SO4 was associated with 925 deaths. Over a 5-month extended exposure period, upper estimates are for 3350 deaths, 4030 emergency cardiovascular and 6493 emergency respiratory hospitalizations. These figures represent a worst-case scenario and can inform health protection planning for effusive volcanic eruptions which may affect the UK in the future
    corecore