18,859 research outputs found
Parallel processing for scientific computations
The main contribution of the effort in the last two years is the introduction of the MOPPS system. After doing extensive literature search, we introduced the system which is described next. MOPPS employs a new solution to the problem of managing programs which solve scientific and engineering applications on a distributed processing environment. Autonomous computers cooperate efficiently in solving large scientific problems with this solution. MOPPS has the advantage of not assuming the presence of any particular network topology or configuration, computer architecture, or operating system. It imposes little overhead on network and processor resources while efficiently managing programs concurrently. The core of MOPPS is an intelligent program manager that builds a knowledge base of the execution performance of the parallel programs it is managing under various conditions. The manager applies this knowledge to improve the performance of future runs. The program manager learns from experience
Magnetohydrostatic equilibrium in starspots: dependences on color (T_{eff}) and surface gravity (g)
Temperature contrasts and magnetic field strengths of sunspot umbrae broadly
follow the thermal-magnetic relationship obtained from magnetohydrostatic
equilibrium. Using a compilation of recent observations, especially in
molecular bands, of temperature contrasts of starspots in cool stars, and a
grid of Kurucz stellar model atmospheres constructed to cover layers of
sub-surface convection zone, we examine how the above relationship scales with
effective temperature T_{eff}, surface gravity g and the associated changes in
opacity of stellar photospheric gas. We calculate expected field strengths in
starpots and find that a given relative reduction in temperatures (or the same
darkness contrasts) yield increasing field strengths against decreasing T_{eff}
due to a combination of pressure and opacity variations against T_{eff}.Comment: 4 pages, 3 figures, to appear in the Proceedings of IAUS 273:
"Physics of Sun and Star Spots", eds. D.P. Choudhary and K. Strassmeier 2010,
Cambridge University Pres
TopCom: Index for Shortest Distance Query in Directed Graph
Finding shortest distance between two vertices in a graph is an important
problem due to its numerous applications in diverse domains, including
geo-spatial databases, social network analysis, and information retrieval.
Classical algorithms (such as, Dijkstra) solve this problem in polynomial time,
but these algorithms cannot provide real-time response for a large number of
bursty queries on a large graph. So, indexing based solutions that pre-process
the graph for efficiently answering (exactly or approximately) a large number
of distance queries in real-time is becoming increasingly popular. Existing
solutions have varying performance in terms of index size, index building time,
query time, and accuracy. In this work, we propose T OP C OM , a novel
indexing-based solution for exactly answering distance queries. Our experiments
with two of the existing state-of-the-art methods (IS-Label and TreeMap) show
the superiority of T OP C OM over these two methods considering scalability and
query time. Besides, indexing of T OP C OM exploits the DAG (directed acyclic
graph) structure in the graph, which makes it significantly faster than the
existing methods if the SCCs (strongly connected component) of the input graph
are relatively small
- …