37,354 research outputs found
Many-Body Localization Transition in Random Quantum Spin Chains with Long-Range Interactions
While there are well established methods to study delocalization transitions
of single particles in random systems, it remains a challenging problem how to
characterize many body delocalization transitions. Here, we use a generalized
real-space renormalization group technique to study the anisotropic Heisenberg
model with long-range interactions, decaying with a power , which are
generated by placing spins at random positions along the chain. This method
permits a large-scale finite-size scaling analysis. We examine the full
distribution function of the excitation energy gap from the ground state and
observe a crossover with decreasing . At the full
distribution coincides with a critical function. Thereby, we find strong
evidence for the existence of a many body localization transition in disordered
antiferromagnetic spin chains with long range interactions.Comment: 6 pages, 4 figures, references adde
Dynamics of weakly coupled random antiferromagnetic quantum spin chains
We study the low-energy collective excitations and dynamical response
functions of weakly coupled random antiferromagnetic spin-1/2 chains. The
interchain coupling leads to Neel order at low temperatures. We use the
real-space renormalization group technique to tackle the intrachain couplings
and treat the interchain couplings within the Random Phase Approximation (RPA).
We show that the system supports collective spin wave excitations, and
calculate the spin wave velocity and spectra weight within RPA. Comparisons
will be made with inelastic neutron scattering experiments
quasi-one-dimensional disordered spin systems such as doped CuGeOComment: 4 page
Comment on "A note on the construction of the Ermakov-Lewis invariant"
We show that the basic results on the paper referred in the title [J. Phys.
A: Math. Gen. v. 35 (2002) 5333-5345], concerning the derivation of the Ermakov
invariant from Noether symmetry methods, are not new
Asymmetric multivariate normal mixture GARCH
An asymmetric multivariate generalization of the recently proposed class of normal mixture GARCH models is developed. Issues of parametrization and estimation are discussed. Conditions for covariance stationarity and the existence of the fourth moment are derived, and expressions for the dynamic correlation structure of the process are provided. In an application to stock market returns, it is shown that the disaggregation of the conditional (co)variance process generated by the model provides substantial intuition. Moreover, the model exhibits a strong performance in calculating out–of–sample Value–at–Risk measures
Multivariate normal mixture GARCH
We present a multivariate generalization of the mixed normal GARCH model proposed in Haas, Mittnik, and Paolella (2004a). Issues of parametrization and estimation are discussed. We derive conditions for covariance stationarity and the existence of the fourth moment, and provide expressions for the dynamic correlation structure of the process. These results are also applicable to the single-component multivariate GARCH(p, q) model and simplify the results existing in the literature. In an application to stock returns, we show that the disaggregation of the conditional (co)variance process generated by our model provides substantial intuition, and we highlight a number of findings with potential significance for portfolio selection and further financial applications, such as regime-dependent correlation structures and leverage effects. Klassifikation: C32, C51, G10, G11Die vorliegende Arbeit ist einer multivariaten Verallgemeinerung des sog. Normal Mixture GARCH Modells gewidmet, dessen univariate Variante von Haas, Mittnik und Paolella (2004a, siehe auch CFS Working Paper 2002/10) vorgeschlagen wurde. Dieses Modell unterscheidet sich von traditionellen GARCH-Ansätzen insbesondere dadurch, dass es eine Abhängigkeit der Risikoentwicklung von - typischerweise unbeobachtbaren - Marktzuständen explizit in Rechnung stellt. Dies wird durch die Beobachtung motiviert, dass das weit verbreitete GARCH Modell in seiner Standardvariante auch dann keine adäquate Beschreibung der Risikodynamik leistet, wenn die Normalverteilung durch flexiblere bedingte Verteilungen ersetzt wird. Zustandsabhängige Volatilitätsprozesse können etwa durch die variierende Dominanz heterogener Marktteilnehmer oder durch wechselnde Marktstimmungen ökonomisch zu erklären sein. Anwendungen des Normal Mixture GARCH Modells auf zahlreiche Aktien- und Wechselkurszeitreihen (siehe z.B. Alexander und Lazar, 2004, 2005; und Haas, Mittnik und Paolella, 2004a,b) haben gezeigt, dass es sich zur Modellierung und Prognose des Volatilitätsprozesses der Renditen solcher Aktiva hervorragend eignet. Indes beschränken sich diese Analysen bisher auf die Untersuchung univariater Zeitreihen. Zahlreiche Probleme der Finanzwirtschaft erfordern jedoch zwingend eine multivariate Modellierung, mithin also eine Beschreibung der Abhängigkeitsstruktur zwischen den Renditen verschiedener Wertpapiere. Insbesondere für solche Analysen erweist sich der Mischungsansatz aber als besonders vielversprechend. So spielen etwa im Portfoliomanagement die Korrelationen zwischen einzelnen Wertpapierrenditen eine herausragende Rolle. Die Stärke der Korrelationen ist von entscheidender Bedeutung dafür, in welchem Ausmaß das Risiko eines effizienten Portfolios durch Diversifikation reduziert werden kann. Nun gibt es empirische Hinweise darauf, dass die Korrelationen etwa zwischen Aktien in Perioden, die durch starke Marktschwankungen und tendenziell fallende Kurse charakterisiert sind, stärker sind als in ruhigeren Perioden. Das bedeutet, dass die Vorteile der Diversifikation in genau jenen Perioden geringer sind, in denen ihr Nutzen am größten wäre. Modelle, die die Existenz unterschiedlicher Marktregime nicht berücksichtigen, werden daher dazu tendieren, die Korrelationen in den adversen Marktzuständen zu unterschätzen. Dies kann zu erheblichen Fehleinschätzungen des tatsächlichen Risikos während solcher Perioden führen. Diese und weitere Implikationen des Mischungsansatzes im Kontext multivariater GARCH Modelle werden in der vorliegenden Arbeit diskutiert, und ihre Relevanz wird anhand einer empirischen Anwendung dokumentiert. Erörtert werden ferner Fragen der Parametrisierung und Schätzung des Modells, und einige relevante theoretische Eigenschaften werden hergeleitet
Coverage and Connectivity in Three-Dimensional Networks
Most wireless terrestrial networks are designed based on the assumption that
the nodes are deployed on a two-dimensional (2D) plane. However, this 2D
assumption is not valid in underwater, atmospheric, or space communications. In
fact, recent interest in underwater acoustic ad hoc and sensor networks hints
at the need to understand how to design networks in 3D. Unfortunately, the
design of 3D networks is surprisingly more difficult than the design of 2D
networks. For example, proofs of Kelvin's conjecture and Kepler's conjecture
required centuries of research to achieve breakthroughs, whereas their 2D
counterparts are trivial to solve. In this paper, we consider the coverage and
connectivity issues of 3D networks, where the goal is to find a node placement
strategy with 100% sensing coverage of a 3D space, while minimizing the number
of nodes required for surveillance. Our results indicate that the use of the
Voronoi tessellation of 3D space to create truncated octahedral cells results
in the best strategy. In this truncated octahedron placement strategy, the
transmission range must be at least 1.7889 times the sensing range in order to
maintain connectivity among nodes. If the transmission range is between 1.4142
and 1.7889 times the sensing range, then a hexagonal prism placement strategy
or a rhombic dodecahedron placement strategy should be used. Although the
required number of nodes in the hexagonal prism and the rhombic dodecahedron
placement strategies is the same, this number is 43.25% higher than the number
of nodes required by the truncated octahedron placement strategy. We verify by
simulation that our placement strategies indeed guarantee ubiquitous coverage.
We believe that our approach and our results presented in this paper could be
used for extending the processes of 2D network design to 3D networks.Comment: To appear in ACM Mobicom 200
Effect of physical parameters on the reaction of graphite with silica in vacuum
Effect of physical parameters on reduction of silica graphite mixtures under vacuum condition
Microscopic study of Ca+Ni fusion reactions
Background: Heavy-ion fusion reactions at energies near the Coulomb barrier
are influenced by couplings between the relative motion and nuclear intrinsic
degrees of freedom of the colliding nuclei. The time-dependent Hartree-Fock
(TDHF) theory, incorporating the couplings at the mean-field level, as well as
the coupled-channels (CC) method are standard approaches to describe low energy
nuclear reactions.
Purpose: To investigate the effect of couplings to inelastic and transfer
channels on the fusion cross sections for the reactions Ca+Ni and
Ca+Ni.
Methods: Fusion cross sections around and below the Coulomb barrier have been
obtained from coupled-channels (CC) calculations, using the bare
nucleus-nucleus potential calculated with the frozen Hartree-Fock method and
coupling parameters taken from known nuclear structure data. The fusion
thresholds and neutron transfer probabilities have been calculated with the
TDHF method.
Results: For Ca+Ni, the TDHF fusion threshold is in agreement
with the most probable barrier obtained in the CC calculations including the
couplings to the low-lying octupole state for Ca and to the
low-lying quadrupole state for Ni. This indicates that the
octupole and quadrupole states are the dominant excitations while neutron
transfer is shown to be weak. For Ca+Ni, the TDHF barrier is
lower than predicted by the CC calculations including the same inelastic
couplings as those for Ca+Ni. TDHF calculations show large
neutron transfer probabilities in Ca+Ni which could result in a
lowering of the fusion threshold.
Conclusions: Inelastic channels play an important role in Ca+Ni
and Ca+Ni reactions. The role of neutron transfer channels has
been highlighted in Ca+Ni
- …
