9,510 research outputs found

    Probing Dark Energy with the Kunlun Dark Universe Survey Telescope

    Full text link
    Dark energy is an important science driver of many upcoming large-scale surveys. With small, stable seeing and low thermal infrared background, Dome A, Antarctica, offers a unique opportunity for shedding light on fundamental questions about the universe. We show that a deep, high-resolution imaging survey of 10,000 square degrees in \emph{ugrizyJH} bands can provide competitive constraints on dark energy equation of state parameters using type Ia supernovae, baryon acoustic oscillations, and weak lensing techniques. Such a survey may be partially achieved with a coordinated effort of the Kunlun Dark Universe Survey Telescope (KDUST) in \emph{yJH} bands over 5000--10,000 deg2^2 and the Large Synoptic Survey Telescope in \emph{ugrizy} bands over the same area. Moreover, the joint survey can take advantage of the high-resolution imaging at Dome A to further tighten the constraints on dark energy and to measure dark matter properties with strong lensing as well as galaxy--galaxy weak lensing.Comment: 9 pages, 6 figure

    Perfect State Transfer in Laplacian Quantum Walk

    Full text link
    For a graph GG and a related symmetric matrix MM, the continuous-time quantum walk on GG relative to MM is defined as the unitary matrix U(t)=exp(itM)U(t) = \exp(-itM), where tt varies over the reals. Perfect state transfer occurs between vertices uu and vv at time τ\tau if the (u,v)(u,v)-entry of U(τ)U(\tau) has unit magnitude. This paper studies quantum walks relative to graph Laplacians. Some main observations include the following closure properties for perfect state transfer: (1) If a nn-vertex graph has perfect state transfer at time τ\tau relative to the Laplacian, then so does its complement if nτn\tau is an integer multiple of 2π2\pi. As a corollary, the double cone over any mm-vertex graph has perfect state transfer relative to the Laplacian if and only if m2(mod4)m \equiv 2 \pmod{4}. This was previously known for a double cone over a clique (S. Bose, A. Casaccino, S. Mancini, S. Severini, Int. J. Quant. Inf., 7:11, 2009). (2) If a graph GG has perfect state transfer at time τ\tau relative to the normalized Laplacian, then so does the weak product G×HG \times H if for any normalized Laplacian eigenvalues λ\lambda of GG and μ\mu of HH, we have μ(λ1)τ\mu(\lambda-1)\tau is an integer multiple of 2π2\pi. As a corollary, a weak product of P3P_{3} with an even clique or an odd cube has perfect state transfer relative to the normalized Laplacian. It was known earlier that a weak product of a circulant with odd integer eigenvalues and an even cube or a Cartesian power of P3P_{3} has perfect state transfer relative to the adjacency matrix. As for negative results, no path with four vertices or more has antipodal perfect state transfer relative to the normalized Laplacian. This almost matches the state of affairs under the adjacency matrix (C. Godsil, Discrete Math., 312:1, 2011).Comment: 26 pages, 5 figures, 1 tabl

    Coupled atomic-molecular condensates in a double-well potential: decaying molecular oscillations

    Full text link
    We present a four-mode model that describes coherent photo-association (PA) in a double-well Bose-Einstein condensate, focusing on the averageaverage molecular populations in certain parameters. Our numerical results predict an interesting strong-damping effect of molecular oscillations by controlling the particle tunnellings and PA light strength, which may provide a promising way for creating a stable molecular condensate via coherent PA in a magnetic double-well potential.Comment: 6 pages, 4 figures, submitte

    Mass Hierarchy Determination Using Neutrinos from Multiple Reactors

    Full text link
    We report the results of Monte Carlo simulations of a medium baseline reactor neutrino experiment. The difference in baselines resulting from the 1 km separations of Daya Bay and Ling Ao reactors reduces the amplitudes of 1-3 oscillations at low energies, decreasing the sensitivity to the neutrino mass hierarchy. A perpendicular detector location eliminates this effect. We simulate experiments under several mountains perpendicular to the Daya Bay/Ling Ao reactors, considering in particular the background from the TaiShan and YangJiang reactor complexes. In general the hierarchy can be determined most reliably underneath the 1000 meter mountain BaiYunZhang, which is 44.5 km from Daya Bay. If some planned reactors are not built then nearby 700 meter mountains at 47-51 km baselines gain a small advantage. Neglecting their low overhead burdens, hills near DongKeng would be the optimal locations. We use a weighted Fourier transform to avoid a spurious dependence on the high energy neutrino spectrum and find that a neural network can extract quantities which determine the hierarchy marginally better than the traditional RL + PV.Comment: 22 pages, added details on the neural network (journal version

    Extrapolation Method for the No-Core Shell Model

    Full text link
    Nuclear many-body calculations are computationally demanding. An estimate of their accuracy is often hampered by the limited amount of computational resources even on present-day supercomputers. We provide an extrapolation method based on perturbation theory, so that the binding energy of a large basis-space calculation can be estimated without diagonalizing the Hamiltonian in this space. The extrapolation method is tested for 3H and 6Li nuclei. It will extend our computational abilities significantly and allow for reliable error estimates.Comment: 8 pages, 7 figures, PRC accepte

    Three Kinds of Special Relativity via Inverse Wick Rotation

    Full text link
    Since the special relativity can be viewed as the physics in an inverse Wick rotation of 4-d Euclid space, which is at almost equal footing with the 4-d Riemann/Lobachevski space, there should be important physics in the inverse Wick rotation of 4-d Riemann/Lobachevski space. Thus, there are three kinds of special relativity in de Sitter/Minkowski/anti-de Sitter space at almost equal footing, respectively. There is an instanton tunnelling scenario in the Riemann-de Sitter case that may explain why \La be positive and link with the multiverse.Comment: 3 pages, no figures, to appear in Chin. Phys. Let
    corecore