3,705 research outputs found

    For Fixed Control Parameters the Quantum Approximate Optimization Algorithm's Objective Function Value Concentrates for Typical Instances

    Get PDF
    The Quantum Approximate Optimization Algorithm, QAOA, uses a shallow depth quantum circuit to produce a parameter dependent state. For a given combinatorial optimization problem instance, the quantum expectation of the associated cost function is the parameter dependent objective function of the QAOA. We demonstrate that if the parameters are fixed and the instance comes from a reasonable distribution then the objective function value is concentrated in the sense that typical instances have (nearly) the same value of the objective function. This applies not just for optimal parameters as the whole landscape is instance independent. We can prove this is true for low depth quantum circuits for instances of MaxCut on large 3-regular graphs. Our results generalize beyond this example. We support the arguments with numerical examples that show remarkable concentration. For higher depth circuits the numerics also show concentration and we argue for this using the Law of Large Numbers. We also observe by simulation that if we find parameters which result in good performance at say 10 bits these same parameters result in good performance at say 24 bits. These findings suggest ways to run the QAOA that reduce or eliminate the use of the outer loop optimization and may allow us to find good solutions with fewer calls to the quantum computer.Comment: 16 pages, 1 figur

    A Quantum Adiabatic Evolution Algorithm Applied to Random Instances of an NP-Complete Problem

    Get PDF
    A quantum system will stay near its instantaneous ground state if the Hamiltonian that governs its evolution varies slowly enough. This quantum adiabatic behavior is the basis of a new class of algorithms for quantum computing. We test one such algorithm by applying it to randomly generated, hard, instances of an NP-complete problem. For the small examples that we can simulate, the quantum adiabatic algorithm works well, and provides evidence that quantum computers (if large ones can be built) may be able to outperform ordinary computers on hard sets of instances of NP-complete problems.Comment: 15 pages, 6 figures, email correspondence to [email protected] ; a shorter version of this article appeared in the April 20, 2001 issue of Science; see http://www.sciencemag.org/cgi/content/full/292/5516/47
    • …
    corecore