2,048 research outputs found
Energy Storage Technology for Decentralised Energy Management: Future Prospects
The chapter provides a comparison of energy storage technologies in decentralised energy systems for energy management. The various costs, advantages and disadvantages of the storage technologies will be considered. System dynamics modelling will be used to analyse energy management within the decentralised renewable and storage systems. Additionally, the integration of hydrogen storage technology and the use of hydrogen as an energy carrier in a decentralised airport scenario will be highlighted and the arising advantages of a decentralised airport using novel electric planes powered by hydrogen are discussed
Transport critical current of Solenoidal MgB2/Cu Coils Fabricated Using a Wind-Reaction In-situ Technique
In this letter, we report the results of transport Jc of solenoid coils upto
100 turns fabricated with Cu-sheathed MgB2 wires using a wind-reaction in-situ
technique. Despite the low density of single core and some reaction between Mg
and Cu-sheath, our results demonstrate the decrease in transport Jc with
increasing length of MgB2 wires is insignificant. Solenoid coils with diameter
as small as 10 mm can be readily fabricated using a wind-reaction in-situ
technique. The Jc of coils is essentially the same as in the form of straight
wires. A Jc of 133,000 A/cm2 and 125,000 A/cm2 at 4 K and self field has been
achieved for a small coil wound using Cu-sheathed tape and Cu-sheathed wire
respectively. These results indicate that the MgB2 wires have a great potential
for lage scale applicationsComment: 6 pages, 4 figures, 1 tabl
Improved Current Densities in MgB2 By Liquid-Assisted Sintering
Polycrystalline MgB2 samples with GaN additions were prepared by reaction of
Mg, B, and GaN powders. The presence of Ga leads to a low melting eutectic
phase which allowed liquid phase sintering and produces plate-like grains. For
low-level GaN additions (5% at. % or less), the critical transition
temperature, Tc, remained unchanged and in 1T magnetic field, the critical
current density, Jc was enhanced by a factor of 2 and 10, for temperatures of
\~5K and 20K, respectively. The values obtained are approaching those of hot
isostatically pressed samples.Comment: 12 pages, 1 table, 4 figures, accepted in Applied Physics Letter
Very fast formation of superconducting MgB2/Fe wires with high Jc
In this paper we have investigated the effects of sintering time and
temperature on the formation and critical current densities of Fe-clad MgB2
wires. MgB2 wires were fabricated using the powder-in-tube process and sintered
for different periods of time at predetermined temperatures. All the samples
were examined using XRD, SEM and magnetisation measurements. In contrast to the
common practice of sintering for several hours, the present results show that
there is no need for prolonged heat treatment in the fabrication of Fe-clad
MgB2 wires. A total time in the furnace of several minutes is more than enough
to form nearly pure MgB2 with high performance characteristics. The results
from Tc, Jc and Hirr show convincingly that the samples which were sintered for
3 minutes above 800 oC are as good as those sintered for longer times. In fact,
the Jc field performance for the most rapidly sintered sample is slightly
better than for all other samples. Jc of 4.5 times 10 ^5 A/cm2 in zero field
and above 10 ^5 A/cm2 in 2T at 15 K has been achieved for the best Fe-clad MgB2
wires. As a result of such a short sintering there is no need for using high
purity argon protection and it is possible to carry out the heat treatment in a
much less protective atmosphere or in air. These findings substantially
simplify the fabrication process, making it possible to have a continuous
process for fabrication and reducing the costs for large-scale production of
MgB2 wires.Comment: 15 pages, one table, 9 figures, submitted to Physica C on June 8,
200
High transport currents in mechanically reinforced MgB2 wires
We prepared and characterized monofilamentary MgB2 wires with a mechanically
reinforced composite sheath of Ta(Nb)/Cu/steel, which leads to dense filaments
and correspondingly high transport currents up to Jc = 10^5 A/cm^2 at 4.2 K,
self field. The reproducibility of the measured transport currents was
excellent and not depending on the wire diameter. Using different precursors,
commercial reacted powder or an unreacted Mg/B powder mixture, a strong
influence on the pinning behaviour and the irreversibility field was observed.
The critical transport current density showed a nearly linear temperature
dependency for all wires being still 52 kA/cm^2 at 20 K and 23 kA/cm^2 at 30 K.
Detailed data for Jc(B,T) and Tc(B) were measured.Comment: 21 pages, 13 figures, revised version, to be published in Supercond.
Sci. Techno
Recommended from our members
Magnetic levitation using a stack of high temperature superconducting tape annuli
Stacks of large width superconducting tape can carry persistent currents over similar length scales to bulk superconductors, therefore giving them potential for trapped field magnets and magnetic levitation. 46 mm wide high temperature superconducting tape has previously been cut into square annuli to create a 3.5 T persistent mode magnet. The same tape pieces were used here to form a composite bulk hollow cylinder with an inner bore of 26 mm. Magnetic levitation was achieved by field cooling with a pair of rare-earth magnets. This paper reports the axial levitation force properties of the stack of annuli, showing that the same axial forces expected for a uniform bulk cylinder of infinite can be generated at 20 K. Levitation forces up to 550 N were measured between the rare-earth magnets and stack. Finite element modelling in COMSOL Multiphysics using the H-formulation was also performed including a full critical state model for induced currents, with temperature and field dependent properties as well as the influence of the ferromagnetic substrate which enhances the force. Spark erosion was used for the first time to machine the stack of tapes proving that large stacks can be easily machined to high geometric tolerance. The stack geometry tested is a possible candidate for a rotary superconducting bearing.The authors would like to acknowledge the financial support of SKF S2M, the magnetic bearing division of SKF, the Isaac Newton Trust, Cambridge and EPSRC
Innovative recruitment using online networks: Lessons learned from an online study of alcohol and other drug use utilizing a web-based Respondent Driven Sampling (webRDS) strategy
Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/106623/1/Innovative recruitment using online networks Lessons learned from an online study of alcohol and other drug use utilizing a web-based Respondent Driven Sampling webRDS strategy.pd
- …