1,732 research outputs found

    Existence of Spinorial States in Pure Loop Quantum Gravity

    Get PDF
    We demonstrate the existence of spinorial states in a theory of canonical quantum gravity without matter. This should be regarded as evidence towards the conjecture that bound states with particle properties appear in association with spatial regions of non-trivial topology. In asymptotically trivial general relativity the momentum constraint generates only a subgroup of the spatial diffeomorphisms. The remaining diffeomorphisms give rise to the mapping class group, which acts as a symmetry group on the phase space. This action induces a unitary representation on the loop state space of the Ashtekar formalism. Certain elements of the diffeomorphism group can be regarded as asymptotic rotations of space relative to its surroundings. We construct states that transform non-trivially under a 2π2\pi-rotation: gravitational quantum states with fractional spin.Comment: 26 pages, 6 figures. Changes made to section 2 and Lemma

    Consistency of Semiclassical Gravity

    Get PDF
    We discuss some subtleties which arise in the semiclassical approximation to quantum gravity. We show that integrability conditions prevent the existence of Tomonaga-Schwinger time functions on the space of three-metrics but admit them on superspace. The concept of semiclassical time is carefully examined. We point out that central charges in the matter sector spoil the consistency of the semiclassical approximation unless the full quantum theory of gravity and matter is anomaly-free. We finally discuss consequences of these considerations for quantum field theory in flat spacetime, but with arbitrary foliations.Comment: 12 pages, LATEX, Report Freiburg THEP-94/2

    Double dot chain as a macroscopic quantum bit

    Full text link
    We consider an array of N quantum dot pairs interacting via Coulomb interaction between adjacent dots and hopping inside each pair. We show that at the first order in the ratio of hopping and interaction amplitudes, the array maps in an effective two level system with energy separation becoming exponentially small in the macroscopic (large N) limit. Decoherence at zero temperature is studied in the limit of weak coupling with phonons. In this case the macroscopic limit is robust with respect to decoherence. Some possible applications in quantum information processing are discussed.Comment: Phys. Rev. A (in press

    Properties of 3-manifolds for relativists

    Full text link
    In canonical quantum gravity certain topological properties of 3-manifolds are of interest. This article gives an account of those properties which have so far received sufficient attention, especially those concerning the diffeomorphism groups of 3-manifolds. We give a summary of these properties and list some old and new results concerning them. The appendix contains a discussion of the group of large diffeomorphisms of the ll-handle 3-manifold.Comment: 20 pages. Plain-TeX, no figures, 1 Table (A4 format

    Bell inequality for pairs of particle-number-superselection-rule restricted states

    Full text link
    Proposals for Bell inequality tests on systems restricted by superselection rules often require operations that are difficult to implement in practice. In this paper, we derive a new Bell inequality, where pairs of states are used to by-pass the superselection rule. In particular, we focus on mode entanglement of an arbitrary number of massive particles and show that our Bell inequality detects the entanglement in the pair when other inequalities fail. However, as the number of particles in the system increases, the violation of our Bell inequality decreases due to the restriction in the measurement space caused by the superselection rule. This Bell test can be implemented using techniques that are routinely used in current experiments.Comment: 9 pages, 6 figures; v2 is the published versio

    Towards Quantum Superpositions of a Mirror: an Exact Open Systems Analysis

    Full text link
    We analyze the recently proposed mirror superposition experiment of Marshall, Simon, Penrose, and Bouwmeester, assuming that the mirror's dynamics contains a non-unitary term of the Lindblad type proportional to -[q,[q,\rho]], with q the position operator for the center of mass of the mirror, and \rho the statistical operator. We derive an exact formula for the fringe visibility for this system. We discuss the consequences of our result for tests of environmental decoherence and of collapse models. In particular, we find that with the conventional parameters for the CSL model of state vector collapse, maintenance of coherence is expected to within an accuracy of at least 1 part in 10^{8}. Increasing the apparatus coupling to environmental decoherence may lead to observable modifications of the fringe visibility, with time dependence given by our exact result.Comment: 4 pages, RevTeX. Substantial changes mad

    A Uniqueness Theorem for Constraint Quantization

    Get PDF
    This work addresses certain ambiguities in the Dirac approach to constrained systems. Specifically, we investigate the space of so-called ``rigging maps'' associated with Refined Algebraic Quantization, a particular realization of the Dirac scheme. Our main result is to provide a condition under which the rigging map is unique, in which case we also show that it is given by group averaging techniques. Our results comprise all cases where the gauge group is a finite-dimensional Lie group.Comment: 23 pages, RevTeX, further comments and references added (May 26. '99

    Quantum rings with time dependent spin-orbit coupling: Rabi oscillations, spintronic Schrodinger-cat states, and conductance properties

    Full text link
    The strength of the (Rashba-type) spin-orbit coupling in mesoscopic semiconductor rings can be tuned with external gate voltages. Here we consider the case of a periodically changing spin-orbit interaction strength as induced by sinusoidal voltages. In a closed one dimensional quantum ring with weak spin-orbit coupling, Rabi oscillations are shown to appear. We find that the time evolution of initially localized wave packets exhibits a series of collapse and revival phenomena. Partial revivals -- that are typical in nonlinear systems -- are shown to correspond to superpositions of states localized at different spatial positions along the ring. These "spintronic Schrodinger-cat sates" appear periodically, and similarly to their counterparts in other physical systems, they are found to be sensitive to environment induced disturbances. The time dependent spin transport problem, when leads are attached to the ring, is also solved. We show that the "sideband currents" induced by the oscillating spin-orbit interaction strength can become the dominant output channel, even in the presence of moderate thermal fluctuations and random scattering events.Comment: 11 pages, 9 figures, submitted to PR

    Reference frames, superselection rules, and quantum information

    Full text link
    Recently, there has been much interest in a new kind of ``unspeakable'' quantum information that stands to regular quantum information in the same way that a direction in space or a moment in time stands to a classical bit string: the former can only be encoded using particular degrees of freedom while the latter are indifferent to the physical nature of the information carriers. The problem of correlating distant reference frames, of which aligning Cartesian axes and synchronizing clocks are important instances, is an example of a task that requires the exchange of unspeakable information and for which it is interesting to determine the fundamental quantum limit of efficiency. There have also been many investigations into the information theory that is appropriate for parties that lack reference frames or that lack correlation between their reference frames, restrictions that result in global and local superselection rules. In the presence of these, quantum unspeakable information becomes a new kind of resource that can be manipulated, depleted, quantified, etcetera. Methods have also been developed to contend with these restrictions using relational encodings, particularly in the context of computation, cryptography, communication, and the manipulation of entanglement. This article reviews the role of reference frames and superselection rules in the theory of quantum information processing.Comment: 55 pages, published versio

    The CWKB particle production and classical condensate in de Sitter spacetime

    Full text link
    The complex time WKB approximation is an effective tool in studying particle production in curved spacetime. We use it in this work to understand the formation of classical condensate in expanding de Sitter spacetime. The CWKB leads to the emergence of thermal spectrum that depends crucially on horizons (as in de Sitter spacetime) or observer dependent horizons (as in Rindler spacetime). A connection is sought between the horizon and the formation of classical condensate. We concentrate on de Sitter spacetime and study the cosmological perturbation of k=0k=0 mode with various values of m/H0m/H_0. We find that for a minimally coupled free scalar field for m2/H02<2m^2/H_0^2<2, the one-mode occupation number grows more than unity soon after the physical wavelength of the mode crosses the Hubble radius and soon after diverges as N(t)O(1)[λphys(t)/H01]2ν21/4N(t)\sim O(1)[\lambda_{phys}(t)/{H_0^{-1}}]^{2\sqrt{\nu^2-1/4}}, where ν(9/4m2/H02)1/2\nu\equiv (9/4 -m^2/{H_0^2})^{1/2}. The results substantiates the previous works in this direction. We also find the correct oscillation and behaviour of N(z)N(z) at small zz from a single expression using CWKB approximation for various values of m/H0m/H_0. We also discuss decoherence in relation to the formation of classical condensate. We also find that the squeezed state formalism and CWKB method give identical results.Comment: 19 pages, revtex, 5 figure
    corecore