25 research outputs found
Experimental Separation of Rashba and Dresselhaus Spin-Splittings in Semiconductor Quantum Wells
The relative strengths of Rashba and Dresselhaus terms describing the
spin-orbit coupling in semiconductor quantum well (QW) structures are extracted
from photocurrent measurements on n-type InAs QWs containing a two-dimensional
electron gas (2DEG). This novel technique makes use of the angular distribution
of the spin-galvanic effect at certain directions of spin orientation in the
plane of a QW. The ratio of the relevant Rashba and Dresselhaus coefficients
can be deduced directly from experiment and does not relay on theoretically
obtained quantities. Thus our experiments open a new way to determine the
different contributions to spin-orbit coupling
Persistent spin splitting of a two-dimensional electron gas in tilted magnetic fields
By varying the orientation of the applied magnetic field with respect to the
normal of a two-dimensional electron gas, the chemical potential and the
specific heat reveal persistent spin splitting in all field ranges. The
corresponding shape of the thermodynamic quantities distinguishes whether the
Rashba spin-orbit interaction RSOI, the Zeeman term or both dominate the
splitting. The interplay of the tilting of the magnetic field and RSOI resulted
to an amplified splitting in weak fields. The effects of changing the RSOI
strength and the Landau level broadening are also investigated.Comment: 10 pages, 5 figure
Quantum states and linear response in dc and electromagnetic fields for charge current and spin polarization of electrons at Bi/Si interface with giant spin-orbit coupling
An expansion of the nearly free-electron model constructed by Frantzeskakis,
Pons and Grioni [Phys. Rev. B {\bf 82}, 085440 (2010)] describing quantum
states at Bi/Si(111) interface with giant spin-orbit coupling is developed and
applied for the band structure and spin polarization calculation, as well as
for the linear response analysis for charge current and induced spin caused by
dc field and by electromagnetic radiation. It is found that the large
spin-orbit coupling in this system may allow resolving the spin-dependent
properties even at room temperature and at realistic collision rate. The
geometry of the atomic lattice combined with spin-orbit coupling leads to an
anisotropic response both for current and spin components related to the
orientation of the external field. The in-plane dc electric field produces only
the in-plane components of spin in the sample while both the in-plane and
out-of-plane spin components can be excited by normally propagating
electromagnetic wave with different polarizations.Comment: 10 pages, 9 figure
Magneto-Gyrotropic Photogalvanic Effects in Semiconductor Quantum Wells
We show that free-carrier (Drude) absorption of both polarized and
unpolarized terahertz radiation in quantum well (QW) structures causes an
electric photocurrent in the presence of an in-plane magnetic field.
Experimental and theoretical analysis evidences that the observed photocurrents
are spin-dependent and related to the gyrotropy of the QWs. Microscopic models
for the photogalvanic effects in QWs based on asymmetry of photoexcitation and
relaxation processes are proposed. In most of the investigated structures the
observed magneto-induced photocurrents are caused by spin-dependent relaxation
of non-equilibrium carriers
Rashba and Dresselhaus spin splittings in semiconductor quantum wells measured by spin photocurrents
Semiconductor Spintronics
Spintronics refers commonly to phenomena in which the spin of electrons in a
solid state environment plays the determining role. In a more narrow sense
spintronics is an emerging research field of electronics: spintronics devices
are based on a spin control of electronics, or on an electrical and optical
control of spin or magnetism. This review presents selected themes of
semiconductor spintronics, introducing important concepts in spin transport,
spin injection, Silsbee-Johnson spin-charge coupling, and spindependent
tunneling, as well as spin relaxation and spin dynamics. The most fundamental
spin-dependent nteraction in nonmagnetic semiconductors is spin-orbit coupling.
Depending on the crystal symmetries of the material, as well as on the
structural properties of semiconductor based heterostructures, the spin-orbit
coupling takes on different functional forms, giving a nice playground of
effective spin-orbit Hamiltonians. The effective Hamiltonians for the most
relevant classes of materials and heterostructures are derived here from
realistic electronic band structure descriptions. Most semiconductor device
systems are still theoretical concepts, waiting for experimental
demonstrations. A review of selected proposed, and a few demonstrated devices
is presented, with detailed description of two important classes: magnetic
resonant tunnel structures and bipolar magnetic diodes and transistors. In most
cases the presentation is of tutorial style, introducing the essential
theoretical formalism at an accessible level, with case-study-like
illustrations of actual experimental results, as well as with brief reviews of
relevant recent achievements in the field.Comment: tutorial review; 342 pages, 132 figure
Pure spin currents induced by spin-dependent scattering processes in SiGe quantum well structures
We show that spin-dependent electron-phonon interaction in the energy relaxation of a two-dimensional electron gas results in equal and oppositely directed currents in the spin-up and spin-down subbands yielding a pure spin current. In our experiments on SiGe heterostructures the pure spin current is converted into an electric current applying a magnetic field that lifts the cancellation of the two partial charge flows. A microscopic theory of this effect, taking account of the asymmetry of the relaxation process, is developed and is in good agreement with the experimental data