3 research outputs found

    Alternating Magnetic Field Controlled, Multifunctional Nano-Reservoirs: Intracellular Uptake and Improved Biocompatibility

    Get PDF
    Biocompatible magnetic nanoparticles hold great therapeutic potential, but conventional particles can be toxic. Here, we report the synthesis and alternating magnetic field dependent actuation of a remotely controllable, multifunctional nano-scale system and its marked biocompatibility with mammalian cells. Monodisperse, magnetic nanospheres based on thermo-sensitive polymer network poly(ethylene glycol) ethyl ether methacrylate-co-poly(ethylene glycol) methyl ether methacrylate were synthesized using free radical polymerization. Synthesized nanospheres have oscillating magnetic field induced thermo-reversible behavior; exhibiting desirable characteristics comparable to the widely used poly-N-isopropylacrylamide-based systems in shrinkage plus a broader volumetric transition range. Remote heating and model drug release were characterized for different field strengths. Nanospheres containing nanoparticles up to an iron concentration of 6 mM were readily taken up by neuron-like PC12 pheochromocytoma cells and had reduced toxicity compared to other surface modified magnetic nanocarriers. Furthermore, nanosphere exposure did not inhibit the extension of cellular processes (neurite outgrowth) even at high iron concentrations (6 mM), indicating minimal negative effects in cellular systems. Excellent intracellular uptake and enhanced biocompatibility coupled with the lack of deleterious effects on neurite outgrowth and prior Food and Drug Administration (FDA) approval of PEG-based carriers suggest increased therapeutic potential of this system for manipulating axon regeneration following nervous system injury

    Carbon Nanotubes: Artificial Nanomaterials to Engineer Single Neurons and Neuronal Networks

    No full text
    Carbon nanotubes are increasingly employed in basic neuroscience approaches, and they have been used in the design of neuronal interfaces or in that of scaffolds promoting neuronal growth in vitro. Ultimately, carbon nanotubes are thought to hold the potential for the development of innovative neurological implants. In this framework, it is particularly relevant to document the impact of interfacing such materials with nerve cells. Carbon nanotubes were shown, when modified with biologically active compounds or functionalized in order to alter their charge, to affect neurite outgrowth and branching. Notably, purified carbon nanotubes used as scaffolds can promote the formation of nanotube 12neuron hybrid networks, able per se to affect neuron integrative abilities, network connectivity, and synaptic plasticity. We focus this review on our work over several years directed to investigate the ability of carbon nanotube platforms in providing a new tool for non genetic manipulations of neuronal performance and network signaling. \ua9 2012 American Chemical Society

    Meta-analysis of cellular toxicity for cadmium-containing quantum dots

    No full text
    corecore