3,866 research outputs found

    Energy Gap and Spin Polarization in the 5/2 Fractional Quantum Hall Effect

    Full text link
    We consider the issue of the appropriate underlying wavefunction describing the enigmatic 5/2 fractional quantum Hall effect (FQHE), the only even denominator FQHE unambiguously observed in a single layer two dimensional (2D) electron system. Using experimental transport data and theoretical analysis, we argue that the possibility of the experimental 5/2 FQH state being not fully spin-polarized cannot be ruled out. We also establish that the parallel field-induced destruction of the 5/2 FQHE arises primarily from the enhancement of effective disorder by the parallel field with the Zeeman energy playing an important quantitative role.Comment: 4 pages, 2 figure

    Light-Cone Quantization of the Liouville Model

    Full text link
    We present the quantization of the Liouville model defined in light-cone coordinates in (1,1) signature space. We take advantage of the representation of the Liouville field by the free field of the Backl\"{u}nd transformation and adapt the approch by Braaten, Curtright and Thorn. Quantum operators of the Liouville field +ϕ\partial_{+}\phi, ϕ\partial_{-}\phi, egϕe^{g\phi}, e2gϕe^{2g\phi} are constructed consistently in terms of the free field. The Liouville model field theory space is found to be restricted to the sector with field momentum P+=PP_{+}=-P_{-}, P+>0P_{+}> 0 , which is a closed subspace for the Liouville theory operator algebra.Comment: 16 p, EFI-92-6

    Soliton quantization and internal symmetry

    Full text link
    We apply the method of collective coordinate quantization to a model of solitons in two spacetime dimensions with a global U(1)U(1) symmetry. In particular we consider the dynamics of the charged states associated with rotational excitations of the soliton in the internal space and their interactions with the quanta of the background field (mesons). By solving a system of coupled saddle-point equations we effectively sum all tree-graphs contributing to the one-point Green's function of the meson field in the background of a rotating soliton. We find that the resulting one-point function evaluated between soliton states of definite U(1)U(1) charge exhibits a pole on the meson mass shell and we extract the corresponding S-matrix element for the decay of an excited state via the emission of a single meson using the standard LSZ reduction formula. This S-matrix element has a natural interpretation in terms of an effective Lagrangian for the charged soliton states with an explicit Yukawa coupling to the meson field. We calculate the leading-order semi-classical decay width of the excited soliton states discuss the consequences of these results for the hadronic decay of the Δ\Delta resonance in the Skyrme model.Comment: 23 pages, LA-UR-93-299

    On-Farm Food Safety and Environmental Farm Plans: A Conceptual Framework for Identifying and Classifying Benefits and Costs

    Get PDF
    This series of six reports entitled: "On-Farm Food Safety and Environmental Farm Plans: Identifying and Classifying Benefits and Costs" was initiated soon after the launch of the Agricultural Policy Framework (APF) in 2002. The APF recognized the importance of food safety and environmental concerns for the future growth of the agriculture and Agri-food sector. For this reason, Agriculture and Agri-Food Canada (AAFC) commissioned this series of reports to develop a conceptual framework to strengthen our understanding of the potential benefit and cost implications of On-farm Food Safety (OFFS) and Environmental Farm Plans (EFP) that were key components of the APF. The reports were prepared by a group of academics with extensive knowledge of the agriculture and Agri-food sector and issues related to food safety, traceability and the environment. The first report presents a summary of the findings in the five main reports in the series. The second report presents the conceptual framework that was developed to help identify qualitatively the potential benefits and costs that the various players in the agriculture and agri-food supply chain would face in implementing OFFS and EFP programs. The third report applies this framework to pork, the fourth, to beef, the fifth, to grains and the sixth, to dairy. In general, benefits and costs are divided into both demand and supply side effects. In addition, both public and private costs and benefits are considered, especially since they help indicate where a role for government might be required and where markets are not working as well as they might. Based on these preliminary qualitative assessments, the beef and pork sector have more to gain from HACCP-based OFFS and EFP initiatives, due to their ability to gain market share from marketing their products internationally, while the grains sector already benefits internationally from its high quality reputation and the dairy sector is restricted to produce only for the domestic market. However, more work is required in these areas to validate and quantify costs and benefits.Agribusiness, Agricultural and Food Policy, Environmental Economics and Policy, Food Consumption/Nutrition/Food Safety, Production Economics, Resource /Energy Economics and Policy,

    Quantum-Classical Crossover and Apparent Metal-Insulator Transition in a Weakly Interacting 2D Fermi Liquid

    Full text link
    We report the observation of a parallel magnetic field induced metal-insulator transition (MIT) in a high-mobility two-dimensional electron gas (2DEG) for which spin and localization physics most likely play no major role. The high-mobility metallic phase at low field is consistent with the established Fermi liquid transport theory including phonon scattering, whereas the insulating phase at higher field shows a large negative temperature dependence at resistances much smaller than the quantum of resistance, h/e2h/e^2. We argue that this observation is a direct manifestation of a quantum-classical crossover arising predominantly from the magneto-orbital coupling between the finite width of the 2DEG and the in-plane magnetic field.Comment: 4 pages, 2 figure

    Quantum Hamilton-Jacobi equation

    Get PDF
    The nontrivial transformation of the phase space path integral measure under certain discretized analogues of canonical transformations is computed. This Jacobian is used to derive a quantum analogue of the Hamilton-Jacobi equation for the generating function of a canonical transformation that maps any quantum system to a system with a vanishing Hamiltonian. A formal perturbative solution of the quantum Hamilton-Jacobi equation is given.Comment: 4 pages, RevTe

    Intrinsic Gap of the nu=5/2 Fractional Quantum Hall State

    Full text link
    The fractional quantum Hall effect is observed at low field, in a regime where the cyclotron energy is smaller than the Coulomb interaction. The nu=5/2 excitation gap is measured to be 262+/-15 mK at ~2.6 T, in good agreement with previous measurements performed on samples with similar mobility, but with electronic density larger by a factor of two. The role of disorder on the nu=5/2 gap is examined. Comparison between experiment and theory indicates that a large discrepancy remains for the intrinsic gap extrapolated from the infinite mobility (zero disorder) limit. In contrast, no such large discrepancy is found for the nu=1/3 Laughlin state. The observation of the nu=5/2 state in the low-field regime implies that inclusion of non-perturbative Landau level mixing may be necessary to better understand the energetics of half-filled fractional quantum hall liquids.Comment: 5 pages, 4 figures; typo corrected, comment expande

    Scattering Mechanism in Modulation-Doped Shallow Two-Dimensional Electron Gases

    Full text link
    We report on a systematic investigation of the dominant scattering mechanism in shallow two-dimensional electron gases (2DEGs) formed in modulation-doped GaAs/Al_{x}Ga_{1-x}As heterostructures. The power-law exponent of the electron mobility versus density, mu \propto n^{alpha}, is extracted as a function of the 2DEG's depth. When shallower than 130 nm from the surface, the power-law exponent of the 2DEG, as well as the mobility, drops from alpha \simeq 1.65 (130 nm deep) to alpha \simeq 1.3 (60 nm deep). Our results for shallow 2DEGs are consistent with theoretical expectations for scattering by remote dopants, in contrast to the mobility-limiting background charged impurities of deeper heterostructures.Comment: 4 pages, 3 figures, modified version as accepted in AP

    Modelling of laboratory data of bi-directional reflectance of regolith surface containing Alumina

    Full text link
    Bidirectional reflectance of a surface is defined as the ratio of the scattered radiation at the detector to the incident irradiance as a function of geometry. The accurate knowledge of the bidirectional reflection function (BRF) of layers composed of discrete, randomly positioned scattering particles is very essential for many remote sensing, engineering, biophysical applications and in different areas of Astrophysics. The computations of BRF's for plane parallel particulate layers are usually reduced to solve the radiative transfer equation (RTE) by the existing techniques. In this work we present our laboratory data on bidirectional reflectance versus phase angle for two sample sizes of 0.3 and 1 μm\mu m of Alumina for the He-Ne laser at 632.8 nm (red) and 543.5nm(green) wavelength. The nature of the phase curves of the asteroids depends on the parameters like- particle size, composition, porosity, roughness etc. In our present work we analyse the data which are being generated using single scattering phase function i.e. Mie theory considering particles to be compact sphere. The well known Hapke formula will be considered along with different particle phase function such as Mie and Henyey Greenstein etc to model the laboratory data obtained at the asteroid laboratory of Assam University.Comment: 5 pages, 5 figures [accepted for publication in Publications of the Astronomical Society of Australia (PASA) on 8 June, 2011
    corecore