9 research outputs found

    Spinal Cord Injury Causes Sustained Disruption of the Blood-Testis Barrier in the Rat

    Get PDF
    There is a high incidence of infertility in males following traumatic spinal cord injury (SCI). Quality of semen is frequently poor in these patients, but the pathophysiological mechanism(s) causing this are not known. Blood-testis barrier (BTB) integrity following SCI has not previously been examined. The objective of this study was to characterize the effects of spinal contusion injury on the BTB in the rat. 63 adult, male Sprague Dawley rats received SCI (n = 28), laminectomy only (n = 7) or served as uninjured, age-matched controls (n = 28). Using dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI), BTB permeability to the vascular contrast agent gadopentate dimeglumine (Gd) was assessed at either 72 hours-, or 10 months post-SCI. DCE-MRI data revealed that BTB permeability to Gd was greater than controls at both 72 h and 10 mo post-SCI. Histological evaluation of testis tissue showed increased BTB permeability to immunoglobulin G at both 72 hours- and 10 months post-SCI, compared to age-matched sham-operated and uninjured controls. Tight junctional integrity within the seminiferous epithelium was assessed; at 72 hours post-SCI, decreased expression of the tight junction protein occludin was observed. Presence of inflammation in the testes was also examined. High expression of the proinflammatory cytokine interleukin-1 beta was detected in testis tissue. CD68+ immune cell infiltrate and mast cells were also detected within the seminiferous epithelium of both acute and chronic SCI groups but not in controls. In addition, extensive germ cell apoptosis was observed at 72 h post-SCI. Based on these results, we conclude that SCI is followed by compromised BTB integrity by as early as 72 hours post-injury in rats and is accompanied by a substantial immune response within the testis. Furthermore, our results indicate that the BTB remains compromised and testis immune cell infiltration persists for months after the initial injury

    Pummelo Protects Doxorubicin-Induced Cardiac Cell Death by Reducing Oxidative Stress, Modifying Glutathione Transferase Expression, and Preventing Cellular Senescence

    Get PDF
    Citrus flavonoids have been shown to reduce cardiovascular disease (CVD) risks prominently due to their antioxidant effects. Here we investigated the protective effect of pummelo (Citrus maxima, CM) fruit juice in rat cardiac H9c2 cells against doxorubicin (DOX-) induced cytotoxicity. Four antioxidant compositions (ascorbic acid, hesperidin, naringin, and gallic acid) were determined by HPLC. CM significantly increased cardiac cell survival from DOX toxicity as evaluated by MTT assay. Reduction of cellular oxidative stress was monitored by the formation of DCF fluorescent product and total glutathione (GSH) levels. The changes in glutathione-S-transferase (GST) activity and expression were determined by enzyme activity assay and Western blot analysis, respectively. Influence of CM on senescence-associated β-galactosidase activity (SA-β-gal) was also determined. The mechanisms of cytoprotection involved reduction of intracellular oxidative stress, maintaining GSH availability, and enhanced GST enzyme activity and expression. DOX-induced cellular senescence was also attenuated by long-term CM treatment. Thus, CM fruit juice can be promoted as functional fruit to protect cells from oxidative cell death, enhance the phase II GSTP enzyme activity, and decrease senescence phenotype population induced by cardiotoxic agent such as DOX

    Examining the potential of web-based multimedia to support complex fine motor skill learning: An empirical study

    No full text
    Research on the utilization of the Web for complex fine motor skill learning that involves whole body movements is still scarce. The aim of this study was to evaluate the impact of the introduction of a multimedia web-based learning environment, which was targeted at a rhythmic gymnastics routine consisting of eight fine motor skills, into an undergraduate course in a physical education department, as a complementary tool to campus-based instruction. The impact was evaluated in terms of: acquisition of knowledge regarding the routine skills by students, improvement of students' ability to execute the routine, and students' responses to the environment. The study followed a pretest/posttest experimental design and involved 76 students randomly split into two groups: The Multimedia Web-based Learning Group (MWLG) students (N = 38), who attended campus-based instruction on the routine and also used the environment in their own space and time, and the Traditional On-site Instruction Group (TOIG) students (N = 38), who only attended campus-based instruction. The research data were gathered through student questionnaires and ratings of students' performances. It was found that the use of the environment as a supplement to campus-based instruction increased the effectiveness of this instruction as regards the cognitive component of motor skill learning (i.e. acquisition of knowledge regarding the routine skills) and was well-accepted by the students, although it did not have any significant contribution to the physical component of motor skill learning (i.e. performance of the routine skills). These findings partially support the future wider adoption of multimedia web-based learning environments within physical education and other academic disciplines that involve complex fine motor skill learning. Relevant implications are discussed. © 2013 Springer Science+Business Media New York

    Restoring Fertility with Cryopreserved Prepubertal Testicular Tissue: Perspectives with Hydrogel Encapsulation, Nanotechnology, and Bioengineered Scaffolds

    No full text
    New and improved oncological therapies are now able to cure more than 80% of cancer-affected children in Europe. However, such treatments are gonadotoxic and result in fertility issues, especially in boys who are not able to provide a sperm sample before starting chemo/radiotherapy because of their prepubertal state. For these boys, cryopreservation of immature testicular tissue (ITT) is the only available option, aiming to preserve spermatogonial stem cells (SSCs). Both slow-freezing and vitrification have been investigated to this end and are now applied in a clinical setting for SSC cryopreservation. Research now has to focus on methods that will allow fertility restoration. This review discusses different studies that have been conducted on ITT transplantation, including those using growth factor supplementation like free molecules, or tissue encapsulation with or without nanoparticles, as well as the possibility of developing a bioartificial testis that can be used for in vitro gamete production or in vivo transplantation

    Innate and adaptive immune responses in male and female reproductive tracts in homeostasis and following HIV infection

    No full text
    corecore