245 research outputs found
Single and multiple detections of foodborne pathogens by gold nanoparticle assays.
A late detection of pathogenic microorganisms in food and drinking water has a high potential to cause adverse health impacts in those who have ingested the pathogens. For this reason there is intense interest in developing precise, rapid and sensitive assays that can detect multiple foodborne pathogens. Such assays would be valuable components in the campaign to minimize foodborne illness. Here, we discuss the emerging types of assays based on gold nanoparticles (GNPs) for rapidly diagnosing single or multiple foodborne pathogen infections. Colorimetric and lateral flow assays based on GNPs may be read by the human eye. Refractometric sensors based on a shift in the position of a plasmon resonance absorption peak can be read by the new generation of inexpensive optical spectrometers. Surface-enhanced Raman spectroscopy and the quartz microbalance require slightly more sophisticated equipment but can be very sensitive. A wide range of electrochemical techniques are also under development. Given the range of options provided by GNPs, we confidently expect that some, or all, of these technologies will eventually enter routine use for detecting pathogens in food. This article is categorized under: Diagnostic Tools > Biosensing
An improved soil ionization representation to numerical simulation of impulsive grounding systems
This paper presents a hybrid method based on the transmission line modeling method (TLM) aiming to represent the soil ionization effect for grounding systems simulation. This natural phenomenon can be better represented by taking into account the variation of the conductive components present in the TLM circuit and considering the residual resistivity remaining in the soil. The proposed analytical formulation is developed with a focus on the computational implementation of the method. The model is validated by comparing synthetized test results with measured data and other numerical models (residual resistivity, TLM, and analytical model). High precision together with an easy to implement formulation indicates that the methodology presents potential for real-life applications
Measurement of the solar 8B neutrino rate with a liquid scintillator target and 3 MeV energy threshold in the Borexino detector
We report the measurement of electron neutrino elastic scattering from 8B
solar neutrinos with 3 MeV energy threshold by the Borexino detector in Gran
Sasso (Italy). The rate of solar neutrino-induced electron scattering events
above this energy in Borexino is 0.217 +- 0.038 (stat) +- 0.008 (syst) cpd/100
t, which corresponds to the equivalent unoscillated flux of (2.4 +- 0.4 (stat)
+- 0.1 (syst))x10^6 cm^-2 s^-1, in good agreement with measurements from SNO
and SuperKamiokaNDE. Assuming the 8B neutrino flux predicted by the high
metallicity Standard Solar Model, the average 8B neutrino survival probability
above 3 MeV is measured to be 0.29+-0.10. The survival probabilities for 7Be
and 8B neutrinos as measured by Borexino differ by 1.9 sigma. These results are
consistent with the prediction of the MSW-LMA solution of a transition in the
solar electron neutrino survival probability between the low energy
vacuum-driven and the high-energy matter-enhanced solar neutrino oscillation
regimes.Comment: 10 pages, 8 figures, 6 table
Recommended from our members
Search for Solar Axions Produced in Reaction with Borexino Detector
A search for 5.5-MeV solar axions produced in the reaction was performed using the Borexino detector. The Compton
conversion of axions to photons, ; the
axio-electric effect, ; the decay of axions into
two photons, ; and inverse Primakoff conversion on
nuclei, , are considered. Model independent
limits on axion-electron (), axion-photon (), and
isovector axion-nucleon () couplings are obtained: and at 1 MeV (90% c.l.). These limits are
2-4 orders of magnitude stronger than those obtained in previous
laboratory-based experiments using nuclear reactors and accelerators.Comment: 11 pages, 7 figures, submitted to Phys.Rev.
Recommended from our members
Measurement of geo-neutrinos from 1353 days of Borexino
We present a measurement of the geo--neutrino signal obtained from 1353 days
of data with the Borexino detector at Laboratori Nazionali del Gran Sasso in
Italy. With a fiducial exposure of (3.69 0.16) proton
year after all selection cuts and background subtraction, we detected
(14.3 4.4) geo-neutrino events assuming a fixed chondritic mass Th/U
ratio of 3.9. This corresponds to a geo-neutrino signal = (38.8
12.0) TNU with just a 6 probability for a null geo-neutrino
measurement. With U and Th left as free parameters in the fit, the relative
signals are = (10.6 12.7) TNU and =
(26.5 19.5) TNU. Borexino data alone are compatible with a mantle
geo--neutrino signal of (15.4 12.3) TNU, while a combined analysis with
the KamLAND data allows to extract a mantle signal of (14.1 8.1) TNU. Our
measurement of a reactor anti--neutrino signal =
84.5 TNU is in agreement with expectations in the presence of
neutrino oscillations.Comment: 9 pages, 6 figure
Muon and Cosmogenic Neutron Detection in Borexino
Borexino, a liquid scintillator detector at LNGS, is designed for the
detection of neutrinos and antineutrinos from the Sun, supernovae, nuclear
reactors, and the Earth. The feeble nature of these signals requires a strong
suppression of backgrounds below a few MeV. Very low intrinsic radiogenic
contamination of all detector components needs to be accompanied by the
efficient identification of muons and of muon-induced backgrounds. Muons
produce unstable nuclei by spallation processes along their trajectory through
the detector whose decays can mimic the expected signals; for isotopes with
half-lives longer than a few seconds, the dead time induced by a muon-related
veto becomes unacceptably long, unless its application can be restricted to a
sub-volume along the muon track. Consequently, not only the identification of
muons with very high efficiency but also a precise reconstruction of their
tracks is of primary importance for the physics program of the experiment. The
Borexino inner detector is surrounded by an outer water-Cherenkov detector that
plays a fundamental role in accomplishing this task. The detector design
principles and their implementation are described. The strategies adopted to
identify muons are reviewed and their efficiency is evaluated. The overall muon
veto efficiency is found to be 99.992% or better. Ad-hoc track reconstruction
algorithms developed are presented. Their performance is tested against muon
events of known direction such as those from the CNGS neutrino beam, test
tracks available from a dedicated External Muon Tracker and cosmic muons whose
angular distribution reflects the local overburden profile. The achieved
angular resolution is 3-5 deg and the lateral resolution is 35-50 cm, depending
on the impact parameter of the crossing muon. The methods implemented to
efficiently tag cosmogenic neutrons are also presented.Comment: 42 pages. 32 figures on 37 files. Uses JINST.cls. 1 auxiliary file
(defines.tex) with TEX macros. submitted to Journal of Instrumentatio
Muon and Cosmogenic Neutron Detection in Borexino
Borexino, a liquid scintillator detector at LNGS, is designed for the
detection of neutrinos and antineutrinos from the Sun, supernovae, nuclear
reactors, and the Earth. The feeble nature of these signals requires a strong
suppression of backgrounds below a few MeV. Very low intrinsic radiogenic
contamination of all detector components needs to be accompanied by the
efficient identification of muons and of muon-induced backgrounds. Muons
produce unstable nuclei by spallation processes along their trajectory through
the detector whose decays can mimic the expected signals; for isotopes with
half-lives longer than a few seconds, the dead time induced by a muon-related
veto becomes unacceptably long, unless its application can be restricted to a
sub-volume along the muon track. Consequently, not only the identification of
muons with very high efficiency but also a precise reconstruction of their
tracks is of primary importance for the physics program of the experiment. The
Borexino inner detector is surrounded by an outer water-Cherenkov detector that
plays a fundamental role in accomplishing this task. The detector design
principles and their implementation are described. The strategies adopted to
identify muons are reviewed and their efficiency is evaluated. The overall muon
veto efficiency is found to be 99.992% or better. Ad-hoc track reconstruction
algorithms developed are presented. Their performance is tested against muon
events of known direction such as those from the CNGS neutrino beam, test
tracks available from a dedicated External Muon Tracker and cosmic muons whose
angular distribution reflects the local overburden profile. The achieved
angular resolution is 3-5 deg and the lateral resolution is 35-50 cm, depending
on the impact parameter of the crossing muon. The methods implemented to
efficiently tag cosmogenic neutrons are also presented.Comment: 42 pages. 32 figures on 37 files. Uses JINST.cls. 1 auxiliary file
(defines.tex) with TEX macros. submitted to Journal of Instrumentatio
Recommended from our members
New experimental limits on the Pauli forbidden transitions in C nuclei obtained with 485 days Borexino data
The Pauli exclusion principle (PEP) has been tested for nucleons () in
with the Borexino detector.The approach consists of a search for
, , and emitted in a non-Paulian transition of
1- shell nucleons to the filled 1 shell in nuclei. Due to the
extremely low background and the large mass (278 t) of the Borexino detector,
the following most stringent up-to-date experimental bounds on PEP violating
transitions of nucleons have been established:
y, y,
y,
y and y, all at 90% C.L. The corresponding upper
limits on the relative strengths for the searched non-Paulian electromagnetic,
strong and weak transitions have been estimated: , and .Comment: 9 pages, 6 figure
Muon and Cosmogenic Neutron Detection in Borexino
Borexino, a liquid scintillator detector at LNGS, is designed for the
detection of neutrinos and antineutrinos from the Sun, supernovae, nuclear
reactors, and the Earth. The feeble nature of these signals requires a strong
suppression of backgrounds below a few MeV. Very low intrinsic radiogenic
contamination of all detector components needs to be accompanied by the
efficient identification of muons and of muon-induced backgrounds. Muons
produce unstable nuclei by spallation processes along their trajectory through
the detector whose decays can mimic the expected signals; for isotopes with
half-lives longer than a few seconds, the dead time induced by a muon-related
veto becomes unacceptably long, unless its application can be restricted to a
sub-volume along the muon track. Consequently, not only the identification of
muons with very high efficiency but also a precise reconstruction of their
tracks is of primary importance for the physics program of the experiment. The
Borexino inner detector is surrounded by an outer water-Cherenkov detector that
plays a fundamental role in accomplishing this task. The detector design
principles and their implementation are described. The strategies adopted to
identify muons are reviewed and their efficiency is evaluated. The overall muon
veto efficiency is found to be 99.992% or better. Ad-hoc track reconstruction
algorithms developed are presented. Their performance is tested against muon
events of known direction such as those from the CNGS neutrino beam, test
tracks available from a dedicated External Muon Tracker and cosmic muons whose
angular distribution reflects the local overburden profile. The achieved
angular resolution is 3-5 deg and the lateral resolution is 35-50 cm, depending
on the impact parameter of the crossing muon. The methods implemented to
efficiently tag cosmogenic neutrons are also presented.Comment: 42 pages. 32 figures on 37 files. Uses JINST.cls. 1 auxiliary file
(defines.tex) with TEX macros. submitted to Journal of Instrumentatio
Low-energy (anti)neutrino physics with Borexino: Neutrinos from the primary proton-proton fusion process in the Sun
The Sun is fueled by a series of nuclear reactions that produce the energy
that makes it shine. The primary reaction is the fusion of two protons into a
deuteron, a positron and a neutrino. These neutrinos constitute the vast
majority of neutrinos reaching Earth, providing us with key information about
what goes on at the core of our star. Several experiments have now confirmed
the observation of neutrino oscillations by detecting neutrinos from secondary
nuclear processes in the Sun; this is the first direct spectral measurement of
the neutrinos from the keystone proton-proton fusion. This observation is a
crucial step towards the completion of the spectroscopy of pp-chain neutrinos,
as well as further validation of the LMA-MSW model of neutrino oscillations.Comment: Proceedings from NOW (Neutrino Oscillation Workshop) 201
- …