30 research outputs found

    Rapid neuronet inversion of 2D magnetotelluric data for monitoring of geoelectrical section parameters

    Get PDF
    The inverse MagnetoTelluric (MT) operator is approximated by means of the Neural Network (NN). The methodology of the NN interpretation in classes of the geoelectrical sections described by the hundreds of parameters is proposed. Error of the NN inversion and field misfit are evaluated. A rapid NN algorithm solving the inverse problem and detecting changes of time-dependent dynamic parameters of the section is applied to 2D synthetic data

    Attraction between DNA molecules mediated by multivalent ions

    Get PDF
    The effective force between two parallel DNA molecules is calculated as a function of their mutual separation for different valencies of counter- and salt ions and different salt concentrations. Computer simulations of the primitive model are used and the shape of the DNA molecules is accurately modelled using different geometrical shapes. We find that multivalent ions induce a significant attraction between the DNA molecules whose strength can be tuned by the averaged valency of the ions. The physical origin of the attraction is traced back either to electrostatics or to entropic contributions. For multivalent counter- and monovalent salt ions, we find a salt-induced stabilization effect: the force is first attractive but gets repulsive for increasing salt concentration. Furthermore, we show that the multivalent-ion-induced attraction does not necessarily correlate with DNA overcharging.Comment: 51 pages and 13 figure

    Effective interaction between helical bio-molecules

    Get PDF
    The effective interaction between two parallel strands of helical bio-molecules, such as deoxyribose nucleic acids (DNA), is calculated using computer simulations of the "primitive" model of electrolytes. In particular we study a simple model for B-DNA incorporating explicitly its charge pattern as a double-helix structure. The effective force and the effective torque exerted onto the molecules depend on the central distance and on the relative orientation. The contributions of nonlinear screening by monovalent counterions to these forces and torques are analyzed and calculated for different salt concentrations. As a result, we find that the sign of the force depends sensitively on the relative orientation. For intermolecular distances smaller than 6A˚6\AA it can be both attractive and repulsive. Furthermore we report a nonmonotonic behaviour of the effective force for increasing salt concentration. Both features cannot be described within linear screening theories. For large distances, on the other hand, the results agree with linear screening theories provided the charge of the bio-molecules is suitably renormalized.Comment: 18 pages, 18 figures included in text, 100 bibliog

    Non-monotonic variation with salt concentration of the second virial coefficient in protein solutions

    Full text link
    The osmotic virial coefficient B2B_2 of globular protein solutions is calculated as a function of added salt concentration at fixed pH by computer simulations of the ``primitive model''. The salt and counter-ions as well as a discrete charge pattern on the protein surface are explicitly incorporated. For parameters roughly corresponding to lysozyme, we find that B2B_2 first decreases with added salt concentration up to a threshold concentration, then increases to a maximum, and then decreases again upon further raising the ionic strength. Our studies demonstrate that the existence of a discrete charge pattern on the protein surface profoundly influences the effective interactions and that non-linear Poisson Boltzmann and Derjaguin-Landau-Verwey-Overbeek (DLVO) theory fail for large ionic strength. The observed non-monotonicity of B2B_2 is compared to experiments. Implications for protein crystallization are discussed.Comment: 43 pages, including 17 figure

    Adsorption of mono- and multivalent cat- and anions on DNA molecules

    Get PDF
    Adsorption of monovalent and multivalent cat- and anions on a deoxyribose nucleic acid (DNA) molecule from a salt solution is investigated by computer simulation. The ions are modelled as charged hard spheres, the DNA molecule as a point charge pattern following the double-helical phosphate strands. The geometrical shape of the DNA molecules is modelled on different levels ranging from a simple cylindrical shape to structured models which include the major and minor grooves between the phosphate strands. The densities of the ions adsorbed on the phosphate strands, in the major and in the minor grooves are calculated. First, we find that the adsorption pattern on the DNA surface depends strongly on its geometrical shape: counterions adsorb preferentially along the phosphate strands for a cylindrical model shape, but in the minor groove for a geometrically structured model. Second, we find that an addition of monovalent salt ions results in an increase of the charge density in the minor groove while the total charge density of ions adsorbed in the major groove stays unchanged. The adsorbed ion densities are highly structured along the minor groove while they are almost smeared along the major groove. Furthermore, for a fixed amount of added salt, the major groove cationic charge is independent on the counterion valency. For increasing salt concentration the major groove is neutralized while the total charge adsorbed in the minor groove is constant. DNA overcharging is detected for multivalent salt. Simulations for a larger ion radii, which mimic the effect of the ion hydration, indicate an increased adsorbtion of cations in the major groove.Comment: 34 pages with 14 figure

    Determination of Alkali and Halide Monovalent Ion Parameters for Use in Explicitly Solvated Biomolecular Simulations

    Get PDF
    Alkali (Li+, Na+, K+, Rb+, and Cs+) and halide (F−, Cl−, Br−, and I−) ions play an important role in many biological phenomena, roles that range from stabilization of biomolecular structure, to influence on biomolecular dynamics, to key physiological influence on homeostasis and signaling. To properly model ionic interaction and stability in atomistic simulations of biomolecular structure, dynamics, folding, catalysis, and function, an accurate model or representation of the monovalent ions is critically necessary. A good model needs to simultaneously reproduce many properties of ions, including their structure, dynamics, solvation, and moreover both the interactions of these ions with each other in the crystal and in solution and the interactions of ions with other molecules. At present, the best force fields for biomolecules employ a simple additive, nonpolarizable, and pairwise potential for atomic interaction. In this work, we describe our efforts to build better models of the monovalent ions within the pairwise Coulombic and 6-12 Lennard-Jones framework, where the models are tuned to balance crystal and solution properties in Ewald simulations with specific choices of well-known water models. Although it has been clearly demonstrated that truly accurate treatments of ions will require inclusion of nonadditivity and polarizability (particularly with the anions) and ultimately even a quantum mechanical treatment, our goal was to simply push the limits of the additive treatments to see if a balanced model could be created. The applied methodology is general and can be extended to other ions and to polarizable force-field models. Our starting point centered on observations from long simulations of biomolecules in salt solution with the AMBER force fields where salt crystals formed well below their solubility limit. The likely cause of the artifact in the AMBER parameters relates to the naive mixing of the Smith and Dang chloride parameters with AMBER-adapted Åqvist cation parameters. To provide a more appropriate balance, we reoptimized the parameters of the Lennard-Jones potential for the ions and specific choices of water models. To validate and optimize the parameters, we calculated hydration free energies of the solvated ions and also lattice energies (LE) and lattice constants (LC) of alkali halide salt crystals. This is the first effort that systematically scans across the Lennard-Jones space (well depth and radius) while balancing ion properties like LE and LC across all pair combinations of the alkali ions and halide ions. The optimization across the entire monovalent series avoids systematic deviations. The ion parameters developed, optimized, and characterized were targeted for use with some of the most commonly used rigid and nonpolarizable water models, specifically TIP3P, TIP4PEW, and SPC/E. In addition to well reproducing the solution and crystal properties, the new ion parameters well reproduce binding energies of the ions to water and the radii of the first hydration shells

    Electrostatic potential of B-DNA: effect of interionic correlations.

    Full text link
    Modified Poisson-Boltzmann (MPB) equations have been numerically solved to study ionic distributions and mean electrostatic potentials around a macromolecule of arbitrarily complex shape and charge distribution. Results for DNA are compared with those obtained by classical Poisson-Boltzmann (PB) calculations. The comparisons were made for 1:1 and 2:1 electrolytes at ionic strengths up to 1 M. It is found that ion-image charge interactions and interionic correlations, which are neglected by the PB equation, have relatively weak effects on the electrostatic potential at charged groups of the DNA. The PB equation predicts errors in the long-range electrostatic part of the free energy that are only approximately 1.5 kJ/mol per nucleotide even in the case of an asymmetrical electrolyte. In contrast, the spatial correlations between ions drastically affect the electrostatic potential at significant separations from the macromolecule leading to a clearly predicted effect of charge overneutralization

    Rapid neuronet inversion of 2D magnetotelluric data for monitoring of geoelectrical section parameters

    Full text link
    The inverse MagnetoTelluric (MT) operator is approximated by means of the Neural Network (NN). The methodology of the NN interpretation in classes of the geoelectrical sections described by the hundreds of parameters is proposed. Error of the NN inversion and field misfit are evaluated. A rapid NN algorithm solving the inverse problem and detecting changes of time-dependent dynamic parameters of the section is applied to 2D synthetic data
    corecore