300 research outputs found
Client-server-based LBS architecture: A novel positioning module for improved positioning performance
Permission to distribute obtained from publisher.This work presents a new efficient positioning module that operates over client-server LBS architectures. The
aim of the proposed module is to fulfil the position information requirements for LBS pedestrian applications
by ensuring the availability of reliable, highly accurate and precise position solutions based on GPS single
frequency (L1) positioning service. The positioning module operates at both LBS architecture sides; the client
(mobile device), and the server (positioning server). At the server side, the positioning module is responsible
for correcting user’s location information based on WADGPS corrections. In addition, at the mobile side,
the positioning module is continually in charge for monitoring the integrity and available of the position
solutions as well as managing the communication with the server. The integrity monitoring was based on
EGNOS integrity methods. A prototype of the proposed module was developed and used in experimental trials
to evaluate the efficiency of the module in terms of the achieved positioning performance. The positioning
module was capable of achieving a horizontal accuracy of less than 2 meters with a 95% confidence level
with integrity improvement of more than 30% from existing GPS/EGNOS services
Size effect in ion transport through angstrom-scale slits
It has been an ultimate but seemingly distant goal of nanofluidics to
controllably fabricate capillaries with dimensions approaching the size of
small ions and water molecules. We report ion transport through ultimately
narrow slits that are fabricated by effectively removing a single atomic plane
from a bulk crystal. The atomically flat angstrom-scale slits exhibit little
surface charge, allowing elucidation of the role of steric effects. We find
that ions with hydrated diameters larger than the slit size can still permeate
through, albeit with reduced mobility. The confinement also leads to a notable
asymmetry between anions and cations of the same diameter. Our results provide
a platform for studying effects of angstrom-scale confinement, which is
important for development of nanofluidics, molecular separation and other
nanoscale technologies
Observational detection of meteor-produced VLF electromagnetic radiation
In November 1998, Croatian Physical Society's expedition to Mongolia was undertaken. The goal was to make measurements of the puzzling electrophonic sounds and very low frequency (VLF) radio emission from meteors during the anticipated Leonid meteor storm. During the night of 16/17 November 1998, an extremely high fireball activity of the Leonid meteors occured. During this period, we performed measurements of the VLF radiation from meteors. Here we present a positive signal which consists of a sequence of sharp, short VLF bursts, coincident with the appearance of meteor that was recorded by the video camera. This is the first completely controlled instrumental recording of such an event
Embedding a Carbon Nanotube across the Diameter of a Solid State Nanopore
A fabrication method for positioning and embedding a single-walled carbon nanotube (SWNT) across the diameter of a solid state nanopore is presented. Chemical vapor deposition (CVD) is used to grow SWNTs over arrays of focused ion beam (FIB) milled pores in a thin silicon nitride membrane. This typically yields at least one pore whose diameter is centrally crossed by a SWNT. The final diameter of the FIB pore is adjusted to create a nanopore of any desired diameter by atomic layer deposition, simultaneously embedding and insulating the SWNT everywhere but in the region that crosses the diameter of the final nanopore, where it remains pristine and bare. This nanotube-articulated nanopore is an important step towards the realization of a new type of detector for biomolecule sensing and electronic characterization, including DNA sequencing.Engineering and Applied SciencesMolecular and Cellular BiologyPhysic
The polymer phase of the TDAE-C organic ferromagnet
The high-pressure Electron Spin Resonance (ESR) measurements were preformed
on TDAE-C single crystals and stability of the polymeric phase was
established in the parameter space. At 7 kbar the system undergoes a
ferromagnetic to paramagnetic phase transition due to the pressure-induced
polymerization. The polymeric phase remains stable after the pressure release.
The depolymerization of the pressure-induced phase was observed at the
temperature of 520 K. Below room temperature, the polymeric phase behaves as a
simple Curie-type insulator with one unpaired electron spin per chemical
formula. The TDAE donor-related unpaired electron spins, formerly
ESR-silent, become active above the temperature of 320 K and the Curie-Weiss
behavior is re-established.Comment: Submitted to Phys. Rev.
Gaps and excitations in fullerides with partially filled bands : NMR study of Na2C60 and K4C60
We present an NMR study of Na2C60 and K4C60, two compounds that are related
by electron-hole symmetry in the C60 triply degenerate conduction band. In both
systems, it is known that NMR spin-lattice relaxation rate (1/T1) measurements
detect a gap in the electronic structure, most likely related to
singlet-triplet excitations of the Jahn-Teller distorted (JTD) C60^{2-} or
C60^{4-}. However, the extended temperature range of the measurements presented
here (10 K to 700 K) allows to reveal deviations with respect to this general
trend, both at high and low temperatures. Above room temperature, 1/T1 deviates
from the activated law that one would expect from the presence of the gap and
saturates. In the same temperature range, a lowering of symmetry is detected in
Na2C60 by the appearance of quadrupole effects on the 23Na spectra. In K4C60,
modifications of the 13C spectra lineshapes also indicate a structural
modification. We discuss this high temperature deviation in terms of a coupling
between JTD and local symmetry. At low temperatures, 1/TT tends to a
constant value for Na2C60, both for 13C and 23Na NMR. This indicates a residual
metallic character, which emphasizes the proximity of metallic and insulting
behaviors in alkali fullerides.Comment: 12 pages, 13 figure
Anisotropy of superconducting MgB2 as seen in electron spin resonance and magnetization data
We have observed the conduction electron spin resonance (CESR) in fine
powders of MgB2 both in the superconducting and normal states. The Pauli
susceptibility is chi_s=2.0*10^{-5} emu/mole in the temperature range of 450 to
600 K. The spin relaxation rate has an anomalous temperature dependence. The
CESR measured below T_c at several frequencies suggests that MgB_2 is a
strongly anisotropic superconductor with the upper critical field, H_c2,
ranging between 2 and 16 T. The high-field reversible magnetization data of a
randomly oriented powder sample are well described assuming that MgB_2 is an
anisotropic superconductor with H_c2^{ab} / H_{c2}^{c} \approx 6--9.Comment: 4 pages, 4 eps figure
A neutron scattering study of two-magnon states in the quantum magnet copper nitrate
We report measurements of the two-magnon states in a dimerized
antiferromagnetic chain material, copper nitrate (Cu(NO3)2*2.5D2O). Using
inelastic neutron scattering we have measured the one and two magnon excitation
spectra in a large single crystal. The data are in excellent agreement with a
perturbative expansion of the alternating Heisenberg Hamiltonian from the
strongly dimerized limit. The expansion predicts a two-magnon bound state for q
~ (2n+1)pi*d which is consistent with the neutron scattering data.Comment: 11 pages of revtex style with 6 figures include
Role of dynamic Jahn-Teller distortions in Na2C60 and Na2CsC60 studied by NMR
Through 13C NMR spin lattice relaxation (T1) measurements in cubic Na2C60, we
detect a gap in its electronic excitations, similar to that observed in
tetragonal A4C60. This establishes that Jahn-Teller distortions (JTD) and
strong electronic correlations must be considered to understand the behaviour
of even electron systems, regardless of the structure. Furthermore, in metallic
Na2CsC60, a similar contribution to T1 is also detected for 13C and 133Cs NMR,
implying the occurence of excitations typical of JT distorted C60^{2-} (or
equivalently C60^{4-}). This supports the idea that dynamic JTD can induce
attractive electronic interactions in odd electron systems.Comment: 3 figure
DNA nucleotide-specific modulation of \mu A transverse edge currents through a metallic graphene nanoribbon with a nanopore
We propose two-terminal devices for DNA sequencing which consist of a
metallic graphene nanoribbon with zigzag edges (ZGNR) and a nanopore in its
interior through which the DNA molecule is translocated. Using the
nonequilibrium Green functions combined with density functional theory, we
demonstrate that each of the four DNA nucleotides inserted into the nanopore,
whose edge carbon atoms are passivated by either hydrogen or nitrogen, will
lead to a unique change in the device conductance. Unlike other recent
biosensors based on transverse electronic transport through DNA nucleotides,
which utilize small (of the order of pA) tunneling current across a nanogap or
a nanopore yielding a poor signal-to-noise ratio, our device concept relies on
the fact that in ZGNRs local current density is peaked around the edges so that
drilling a nanopore away from the edges will not diminish the conductance.
Inserting a DNA nucleotide into the nanopore affects the charge density in the
surrounding area, thereby modulating edge conduction currents whose magnitude
is of the order of \mu A at bias voltage ~ 0.1 V. The proposed biosensor is not
limited to ZGNRs and it could be realized with other nanowires supporting
transverse edge currents, such as chiral GNRs or wires made of two-dimensional
topological insulators.Comment: 6 pages, 6 figures, PDFLaTe
- …
