808 research outputs found
Ground State Wave Function of the Schr\"odinger Equation in a Time-Periodic Potential
Using a generalized transfer matrix method we exactly solve the Schr\"odinger
equation in a time periodic potential, with discretized Euclidean space-time.
The ground state wave function propagates in space and time with an oscillating
soliton-like wave packet and the wave front is wedge shaped. In a statistical
mechanics framework our solution represents the partition sum of a directed
polymer subjected to a potential layer with alternating (attractive and
repulsive) pinning centers.Comment: 11 Pages in LaTeX. A set of 2 PostScript figures available upon
request at [email protected] . Physical Review Letter
Gauge and Poincare' Invariant Regularization and Hopf Symmetries
We consider the regularization of a gauge quantum field theory following a
modification of the Polchinski proof based on the introduction of a cutoff
function. We work with a Poincare' invariant deformation of the ordinary
point-wise product of fields introduced by Ardalan, Arfaei, Ghasemkhani and
Sadooghi, and show that it yields, through a limiting procedure of the cutoff
functions, to a regularized theory, preserving all symmetries at every stage.
The new gauge symmetry yields a new Hopf algebra with deformed co-structures,
which is inequivalent to the standard one.Comment: Revised version. 14 pages. Incorrect statements eliminate
Finite Temperature Depinning of a Flux Line from a Nonuniform Columnar Defect
A flux line in a Type-II superconductor with a single nonuniform columnar
defect is studied by a perturbative diagrammatic expansion around an annealed
approximation. The system undergoes a finite temperature depinning transition
for the (rather unphysical) on-the-average repulsive columnar defect, provided
that the fluctuations along the axis are sufficiently large to cause some
portions of the column to become attractive. The perturbative expansion is
convergent throughout the weak pinning regime and becomes exact as the
depinning transition is approached, providing an exact determination of the
depinning temperature and the divergence of the localization length.Comment: RevTeX, 4 pages, 3 EPS figures embedded with epsf.st
The Tangled Nature model as an evolving quasi-species model
We show that the Tangled Nature model can be interpreted as a general
formulation of the quasi-species model by Eigen et al. in a frequency dependent
fitness landscape. We present a detailed theoretical derivation of the mutation
threshold, consistent with the simulation results, that provides a valuable
insight into how the microscopic dynamics of the model determine the observed
macroscopic phenomena published previously. The dynamics of the Tangled Nature
model is defined on the microevolutionary time scale via reproduction, with
heredity, variation, and natural selection. Each organism reproduces with a
rate that is linked to the individuals' genetic sequence and depends on the
composition of the population in genotype space. Thus the microevolutionary
dynamics of the fitness landscape is regulated by, and regulates, the evolution
of the species by means of the mutual interactions. At low mutation rate, the
macro evolutionary pattern mimics the fossil data: periods of stasis, where the
population is concentrated in a network of coexisting species, is interrupted
by bursts of activity. As the mutation rate increases, the duration and the
frequency of bursts increases. Eventually, when the mutation rate reaches a
certain threshold, the population is spread evenly throughout the genotype
space showing that natural selection only leads to multiple distinct species if
adaptation is allowed time to cause fixation.Comment: Paper submitted to Journal of Physics A. 13 pages, 4 figure
Gauge Invariant Cutoff QED
A hidden generalized gauge symmetry of a cutoff QED is used to show the
renormalizability of QED. In particular, it is shown that corresponding Ward
identities are valid all along the renormalization group flow. The exact
Renormalization Group flow equation corresponding to the effective action of a
cutoff lambda phi^4 theory is also derived. Generalization to any gauge group
is indicated.Comment: V1: 18 pages, 2 figures; V2: Discussions improved. Version accepted
for publication in Physica Script
Error threshold in the evolution of diploid organisms
The effects of error propagation in the reproduction of diploid organisms are
studied within the populational genetics framework of the quasispecies model.
The dependence of the error threshold on the dominance parameter is fully
investigated. In particular, it is shown that dominance can protect the
wild-type alleles from the error catastrophe. The analysis is restricted to a
diploid analogue of the single-peaked landscape.Comment: 9 pages, 4 Postscript figures. Submitted to J. Phy. A: Mat. and Ge
Depinning transition of a directed polymer by a periodic potential: a d-dimensional solution
We study the depinning phase transition of a directed polymer in a
-dimensional space by a periodic potential localized on a straight line. We
give exact formulas in all dimensions for the critical pinning we need to
localize the polymer. We show that a bounded state can still arise even if, in
average, the potential layer is not attractive and for diverging values of the
potential on the repulsive sites. The phase transition is of second order.Comment: 11 Pages in LaTeX. Figures available from the authors.
[email protected] (e-mail address
On measurement-based quantum computation with the toric code states
We study measurement-based quantum computation (MQC) using as quantum
resource the planar code state on a two-dimensional square lattice (planar
analogue of the toric code). It is shown that MQC with the planar code state
can be efficiently simulated on a classical computer if at each step of MQC the
sets of measured and unmeasured qubits correspond to connected subsets of the
lattice.Comment: 9 pages, 5 figure
A Prototype Model of Stock Exchange
A prototype model of stock market is introduced and studied numerically. In
this self-organized system, we consider only the interaction among traders
without external influences. Agents trade according to their own strategy, to
accumulate his assets by speculating on the price's fluctuations which are
produced by themselves. The model reproduced rather realistic price histories
whose statistical properties are also similar to those observed in real
markets.Comment: LaTex, 4 pages, 4 Encapsulated Postscript figures, uses psfi
Diffusion on a hypercubic lattice with pinning potential: exact results for the error-catastrophe problem in biological evolution
In the theoretical biology framework one fundamental problem is the so-called
error catastrophe in Darwinian evolution models. We reexamine Eigen's
fundamental equations by mapping them into a polymer depinning transition
problem in a ``genotype'' space represented by a unitary hypercubic lattice.
The exact solution of the model shows that error catastrophe arises as a direct
consequence of the equations involved and confirms some previous qualitative
results. The physically relevant consequence is that such equations are not
adequate to properly describe evolution of complex life on the Earth.Comment: 10 pages in LaTeX. Figures are available from the authors.
[email protected] (e-mail address
- …
