3,003,940 research outputs found

    Photon-Photon Correlations as a Probe of Vacuum Induced Coherence Effects

    Get PDF
    We present new experimental implications of the effects of vacuum induced coherence on the photon -photon correlation in the pi-polarized fluorescence in j = 1/2 to j = 1/2 transition. These effects should be thus observable in measurements of photon statistics in for example Hg and Ba ion traps.Comment: 7 pages, 6 figures, submitted to Physical Review

    Study of quadrupole polarizabilities with combined configuration interaction and coupled-cluster method

    Full text link
    The recently developed method combining the configuration interaction and the coupled-cluster method was demonstrated to provide accurate treatment of correlation corrections in divalent atomic systems [M.S.Safronova, M.G.Kozlov, and C.W.Clark, Phys. Rev. Lett. 107, 143006 (2011)]. We have extended this approach to the calculation of quadrupole polarizabilities alpha_2 and applied it to evaluate alpha_2 for the ground state of Mg and Mg-like Si^{2+}. Performing the calculations in three different approximations of increasing accuracy allowed us to place the upper bounds on the uncertainty of the final results. The recommended values alpha_2(3s^2 1S0)= 35.86(13) a.u. for Si^{2+} and alpha_2(3s^2 1S0)= 814(3) a.u. for Mg are estimated to be accurate to 0.37%. Differences in quadrupole polarizability contributions in neutral Mg and Si^{2+} ion are discussed.Comment: 6 pages, submitted to Phys. Rev.

    Synchronization of extended systems from internal coherence

    Full text link
    A condition for the synchronizability of a pair of PDE systems, coupled through a finite set of variables, is commonly the existence of internal synchronization or internal coherence in each system separately. The condition was previously illustrated in a forced-dissipative system, and is here extended to Hamiltonian systems, using an example from particle physics. Full synchronization is precluded by Liouville's theorem. A form of synchronization weaker than "measure synchronization" is manifest as the positional coincidence of coherent oscillations ("breathers" or "oscillons") in a pair of coupled scalar field models in an expanding universe with a nonlinear potential, and does not occur with a variant of the model that does not exhibit oscillons.Comment: version accepted for publication in PRE (paragraph beginning at the bottom of pg. 5 has been rewritten to suggest unifying principle for synchronizability, applying to both forced-dissipative and Hamiltonian systems; other minor changes

    Comments to On the Accuracy of Lamb Shift Measurements in Hydrogen (Physica Scripta, 55 (1997) 33-40) by V. G. Pal'chikov, Yu. L. Sokolov, and V. P. Yakovlev

    Full text link
    The work is a comments on the article of V. G. Pal'chikov, Yu. L. Sokolov, and V. P. Yakovlev, devoted to the measurement of the Lamb shift in the hydrogen atom and published in Physica Scripta, 55 (1997) 33-40.Comment: 4 pages; [email protected]

    Extracting the Omega- electric quadrupole moment from lattice QCD data

    Full text link
    The Omega- has an extremely long lifetime, and is the most stable of the baryons with spin 3/2. Therefore the Omega- magnetic moment is very accurately known. Nevertheless, its electric quadrupole moment was never measured, although estimates exist in different formalisms. In principle, lattice QCD simulations provide at present the most appropriate way to estimate the Omega- form factors, as function of the square of the transferred four-momentum, Q2, since it describes baryon systems at the physical mass for the strange quark. However, lattice QCD form factors, and in particular GE2, are determined at finite Q2 only, and the extraction of the electric quadrupole moment, Q_Omega= GE2(0) e/(2 M_Omega), involves an extrapolation of the numerical lattice results. In this work we reproduce the lattice QCD data with a covariant spectator quark model for Omega- which includes a mixture of S and two D states for the relative quark-diquark motion. Once the model is calibrated, it is used to determine Q_Omega. Our prediction is Q_Omega= (0.96 +/- 0.02)*10^(-2) efm2 [GE2(0)=0.680 +/- 0.012].Comment: To appear in Phys. Rev. D. Version with small modifications. 8 pages, 1 figur

    Scheme to Measure Quantum Stokes Parameters and their Fluctuations and Correlations

    Get PDF
    We propose a scheme to measure quantum Stokes parameters, their fluctuations and correlations. The proposal involves measurements of intensities and intensity- intensity correlations for suitably defined modes, which can be produced by a combination of half wave and quarter wave plates.Comment: Submitted to the Journal of Modern Optic

    Spin 1 inversion: a Majorana tensor force for deuteron alpha scattering

    Get PDF
    We demonstrate, for the first time, successful S-matrix to potential inversion for spin one projectiles with non-diagonal Sll′jS^j_{ll'} yielding a TRT_{\rm R} interaction. The method is a generalization of the iterative-perturbative, IP, method. We present a test case indicating the degree of uniqueness of the potential. The method is adapted, using established procedures, into direct observable to potential inversion, fitting σ\sigma, iT11{\rm i}T_{11}, T20T_{20}, T21T_{21} and T22T_{22} for d + alpha scattering over a range of energies near 10 MeV. The TRT_{\rm R} interaction which we find is very different from that proposed elsewhere, both real and imaginary parts being very different for odd and even parity channels.Comment: 7 pages Revtex, 4 ps figure
    • …
    corecore