4 research outputs found

    Investigation of PEGylated Derivatives of Rosin as Sustained Release Film Formers

    No full text
    The purpose of the present study was to investigate the potential use of two PEGylated derivatives of rosin (PD) as sustained release film forming materials. The derivatives differed chemically by their acid numbers—PD-1 with 120.93 and PD-2 with 88.19. The derivative films were characterized for surface morphology, water uptake-weight loss, angle of contact, water vapor transmission rate, mechanical properties and permeability study. Dissolution of diclofenac sodium (DS) and propranolol hydrochloride (PHL) as model drugs was studied from coated pellets. The films of derivatives with and without plasticizers were smooth and continuous. PD-2 films developed greater numbers of pores when in contact with phosphate buffer pH 6.8. The low weight loss, low angles of contact and high water vapor transmission rate of PD-2 films were related to presence of higher concentration of PEG esters. Higher tensile strength and percent elongation of PD-2 films was due to greater degree of internal plasticization of the derivative. The permeability of films to model drugs propranolol hydrochloride and diclofenac sodium was inversely proportional to the film thickness and dibutyl phthalate concentration in them; the permeability being greatest in PD-2 films containing 10% PEG 200. Dissolution rate of propranolol hydrochloride was higher from the coated pellets. The dissolution data followed zero order, Baker–Lonsdale equation and Hixon–Crowell equation of release kinetics with high correlation coefficients. The mechanism of drug release from these coated systems however followed class II transport (n > 1.0). The derivatives investigated could successfully retard release of the model drugs and offers an alternative to the conventionally used polymers
    corecore