14 research outputs found

    Clinical features of children and adults with a muscular dystrophy using powered indoor/outdoor wheelchairs (EPIOCs): disease features, comorbidities and complications of disability.

    Get PDF
    Purpose: To describe the clinical features of electric powered indoor/outdoor wheelchair users with a muscular dystrophy, likely to influence optimal prescription; reflecting features of muscular dystrophies, conditions secondary to disability and comorbidities impacting on equipment provision. Methods: cross-sectional retrospective case note review of recipients of electric powered indoor/outdoor wheelchairs provided by a specialist regional wheelchair service. Data on demography, diagnostic/clinical and wheelchair prescription were systematically extracted. Results: Fifty-one men and 14 women, mean age 23.7 (range 10-67, sd 12.95) years, were studied. Forty had Duchenne muscular dystrophy, 22 had other forms of muscular dystrophy and three were unclassified. Twenty-seven were aged under 19. Notable clinical features included problematic pain (10), cardiomyopathy (5) and ventilatory failure (4). Features related to disability were (kypho)scoliosis (20) and oedema/cellulitis (3) whilst comorbidities included back pain (5). Comparison of younger with older users revealed younger users had more features of muscular dystrophy affecting electric powered chair provision (56%) whilst older users had more comorbidity (37%). Tilt-in-space was prescribed for 81% of users, specialised seating for 55% and complex controls for 16%. Conclusions: Muscular dystrophy users were prescribed electric powered indoor/outdoor chairs with many additional features reflecting the consequences of profound muscle weakness. In addition to facilitating independence and participation, electric powered indoor/outdoor chairs have major therapeutic benefits

    Glucosamine and chondroitin sulfate supplementation to treat symptomatic disc degeneration: Biochemical rationale and case report

    Get PDF
    BACKGROUND: Glucosamine and chondroitin sulfate preparations are widely used as food supplements against osteoarthritis, but critics are skeptical about their efficacy, because of the lack of convincing clinical trials and a reasonable scientific rationale for the use of these nutraceuticals. Most trials were on osteoarthritis of the knee, while virtually no documentation exists on spinal disc degeneration. The purpose of this article is to highlight the potential of these food additives against cartilage degeneration in general, and against symptomatic spinal disc degeneration in particular, as is illustrated by a case report. The water content of the intervertebral disc is a reliable measure of its degeneration/ regeneration status, and can be objectively determined by Magnetic Resonance Imaging (MRI) signals. CASE PRESENTATION: Oral intake of glucosamine and chondroitin sulfate for two years associated with disk recovery (brightening of MRI signal) in a case of symptomatic spinal disc degeneration. We provide a biochemical explanation for the possible efficacy of these nutraceuticals. They are bioavailable to cartilage chondrocytes, may stimulate the biosynthesis and inhibit the breakdown of their extracellular matrix proteoglycans. CONCLUSION: The case suggests that long-term glucosamine and chondroitin sulfate intake may counteract symptomatic spinal disc degeneration, particularly at an early stage. However, definite proof requires well-conducted clinical trials with these food supplements, in which disc de-/regeneration can be objectively determined by MRI. A number of biochemical reasons (that mechanistically need to be further resolved) explain why these agents may have cartilage structure- and symptom-modifying effects, suggesting their therapeutic efficacy against osteoarthritis in general

    A Dutch guideline for the treatment of scoliosis in neuromuscular disorders

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Children with neuromuscular disorders with a progressive muscle weakness such as Duchenne Muscular Dystrophy and Spinal Muscular Atrophy frequently develop a progressive scoliosis. A severe scoliosis compromises respiratory function and makes sitting more difficult. Spinal surgery is considered the primary treatment option for correcting severe scoliosis in neuromuscular disorders. Surgery in this population requires a multidisciplinary approach, careful planning, dedicated surgical procedures, and specialized after care.</p> <p>Methods</p> <p>The guideline is based on scientific evidence and expert opinions. A multidisciplinary working group representing experts from all relevant specialties performed the research. A literature search was conducted to collect scientific evidence in answer to specific questions posed by the working group. Literature was classified according to the level of evidence.</p> <p>Results</p> <p>For most aspects of the treatment scientific evidence is scarce and only low level cohort studies were found. Nevertheless, a high degree of consensus was reached about the management of patients with scoliosis in neuromuscular disorders. This was translated into a set of recommendations, which are now officially accepted as a general guideline in the Netherlands.</p> <p>Conclusion</p> <p>In order to optimize the treatment for scoliosis in neuromuscular disorders a Dutch guideline has been composed. This evidence-based, multidisciplinary guideline addresses conservative treatment, the preoperative, perioperative, and postoperative care of scoliosis in neuromuscular disorders.</p

    The use of physical biomodelling in complex spinal surgery

    Get PDF
    Prior studies have suggested that biomodels enhance patient education, preoperative planning and intra-operative stereotaxy; however, the usefulness of biomodels compared to regular imaging modalities such as X-ray, CT and MR has not been quantified. Our objective was to quantify the surgeon’s perceptions on the usefulness of biomodels compared to standard visualisation modalities for preoperative planning and intra-operative anatomical reference. Physical biomodels were manufactured for a series of 26 consecutive patients with complex spinal pathologies using a stereolithographic technique based on CT data. The biomodels were used preoperatively for surgical planning and customising implants, and intra-operatively for anatomical reference. Following surgery, a detailed biomodel utility survey was completed by the surgeons, and informal telephone interviews were conducted with patients. Using biomodels, 21 deformity and 5 tumour cases were performed. Surgeons stated that the anatomical details were better visible on the biomodel than on other imaging modalities in 65% of cases, and exclusively visible on the biomodel in 11% of cases. Preoperative use of the biomodel led to a different decision regarding the choice of osteosynthetic materials used in 52% of cases, and the implantation site of osteosynthetic material in 74% of cases. Surgeons reported that the use of biomodels reduced operating time by a mean of 8% in tumour patients and 22% in deformity procedures. This study supports biomodelling as a useful, and sometimes essential tool in the armamentarium of imaging techniques used for complex spinal surgery
    corecore