3,111 research outputs found
Extinction correction and on-sky calibration of SCUBA-2
Commissioning of SCUBA-2 included a program of skydips and observations of
calibration sources intended to be folded into regular observing as standard
methods of source flux calibration and to monitor the atmospheric opacity and
stability. During commissioning, it was found that these methods could also be
utilised to characterise the fundamental instrument response to sky noise and
astronomical signals. Novel techniques for analysing on-sky performance and
atmospheric conditions are presented, along with results from the calibration
observations and skydips.Comment: 10 pages, 7 figure
Phase transitions and the internal noise structure of nonlinear Schr\"odi nger equation solitons
We predict phase-transitions in the quantum noise characteristics of systems
described by the quantum nonlinear Schr\"odinger equation, showing them to be
related to the solitonic field transition at half the fundamental soliton
amplitude. These phase-transitions are robust with respect to Raman noise and
scattering losses. We also describe the rich internal quantum noise structure
of the solitonic fields in the vicinity of the phase-transition. For optical
coherent quantum solitons, this leads to the prediction that eliminating the
peak side-band noise due to the electronic nonlinearity of silica fiber by
spectral filtering leads to the optimal photon-number noise reduction of a
fundamental soliton.Comment: 10 pages, 5 figure
Transcriptome-wide analysis reveals different categories of response to a standardised immune challenge in a wild rodent
Individuals vary in their immune response and, as a result, some are more susceptible to infectious disease than others. Little is known about the nature of this individual variation in natural populations, or which components of immune pathways are most responsible, but defining this underlying landscape of variation is an essential first step to understanding the drivers of this variation and, ultimately, predicting the outcome of infection. We describe transcriptome-wide variation in response to a standardised immune challenge in wild field voles. We find that markers can be categorised into a limited number of types. For the majority of markers, the response of an individual is dependent on its baseline expression level, with significant enrichment in this category for conventional immune pathways. Another, moderately sized, category contains markers for which the responses of different individuals are also variable but independent of their baseline expression levels. This category lacks any enrichment for conventional immune pathways. We further identify markers which display particularly high individual variability in response, and could be used as markers of immune response in larger studies. Our work shows how a standardised challenge performed on a natural population can reveal the patterns of natural variation in immune response
Effect of backscattering in phase conjugation with weak scatterers
An extension is presented of a recently developed theory (based on the first Born approximation) of cancellation of distortions by phase conjugation. The influence of backscattering of both the incident and the conjugate waves is considered. It is shown that, when backscattering is taken into account, distortions are not eliminated by phase conjugation, except when the conjugate wave is generated without a loss or a gain
Scattering theory of distortion correction by phase conjugation
The correction of wave distortions by the technique of optical phase conjugation is examined first on the basis of a newly derived integral equation for scattering of monochromatic scalar waves in the presence of a phase-conjugate mirror. The solution is developed in an iterative series, and the first- and second-order terms are analyzed and illustrated diagrammatically. A generalization of the integral equation is then presented, which takes into account the electromagnetic nature of light. It is also shown that, if the conjugate wave is generated without losses or gains and with a complete reversal of polarization, a total elimination of distortions may be achieved by this technique under circumstances that frequently occur in practice
- …