2,387 research outputs found

    Microscopic Theory for Coupled Atomistic Magnetization and Lattice Dynamics

    Get PDF
    A coupled atomistic spin and lattice dynamics approach is developed which merges the dynamics of these two degrees of freedom into a single set of coupled equations of motion. The underlying microscopic model comprises local exchange interactions between the electron spin and magnetic moment and the local couplings between the electronic charge and lattice displacements. An effective action for the spin and lattice variables is constructed in which the interactions among the spin and lattice components are determined by the underlying electronic structure. In this way, expressions are obtained for the electronically mediated couplings between the spin and lattice degrees of freedom, besides the well known inter-atomic force constants and spin-spin interactions. These former susceptibilities provide an atomistic ab initio description for the coupled spin and lattice dynamics. It is important to notice that this theory is strictly bilinear in the spin and lattice variables and provides a minimal model for the coupled dynamics of these subsystems and that the two subsystems are treated on the same footing. Questions concerning time-reversal and inversion symmetry are rigorously addressed and it is shown how these aspects are absorbed in the tensor structure of the interaction fields. By means of these results regarding the spin-lattice coupling, simple explanations of ionic dimerization in double anti-ferromagnetic materials, as well as, charge density waves induced by a non-uniform spin structure are given. In the final parts, a set of coupled equations of motion for the combined spin and lattice dynamics are constructed, which subsequently can be reduced to a form which is analogous to the Landau-Lifshitz-Gilbert equations for spin dynamics and damped driven mechanical oscillator for the ...Comment: 22 pages, including 7 pages of Appendix and references, 6 figure

    Late-time spectral line formation in Type IIb supernovae, with application to SN 1993J, SN 2008ax, and SN 2011dh

    Get PDF
    We investigate line formation processes in Type IIb supernovae (SNe) from 100 to 500 days post-explosion using spectral synthesis calculations. The modeling identifies the nuclear burning layers and physical mechanisms that produce the major emission lines, and the diagnostic potential of these. We compare the model calculations with data on the three best observed Type IIb SNe to-date - SN 1993J, SN 2008ax, and SN 2011dh. Oxygen nucleosynthesis depends sensitively on the main-sequence mass of the star and modeling of the [O I] 6300, 6364 lines constrains the progenitors of these three SNe to the M_ZAMS=12-16 M_sun range (ejected oxygen masses 0.3-0.9 M_sun), with SN 2011dh towards the lower end and SN 1993J towards the upper end of the range. The high ejecta masses from M_ZAMS >= 17 M_sun progenitors give rise to brighter nebular phase emission lines than observed. Nucleosynthesis analysis thus supports a scenario of low/moderate mass progenitors for Type IIb SNe, and by implication an origin in binary systems. We demonstrate how oxygen and magnesium recombination lines may be combined to diagnose the magnesium mass in the SN ejecta. For SN 2011dh, a magnesium mass of of 0.02-0.14 M_sun is derived, which gives a Mg/O production ratio consistent with the solar value. Nitrogen left in the He envelope from CNO-burning gives strong [N II] 6548, 6583 emission lines that dominate over H-alpha emission in our models. The hydrogen envelopes of Type IIb SNe are too small and dilute to produce any noticeable H-alpha emission or absorption after ~150 days, and nebular phase emission seen around 6550 A is in many cases likely caused by [N II] 6548, 6583. Finally, the influence of radiative transport on the emergent line profiles is investigated...(abridged)Comment: Published versio

    iPTF16abc and the population of Type Ia supernovae: Comparing the photospheric, transitional and nebular phases

    Get PDF
    Key information about the progenitor system and the explosion mechanism of Type Ia supernovae (SNe~Ia) can be obtained from early observations, within a few days from explosion. iPTF16abc was discovered as a young SN~Ia with excellent early time data. Here, we present photometry and spectroscopy of the SN in the nebular phase. A comparison of the early time data with a sample of SNe~Ia shows distinct features, differing from normal SNe~Ia at early phases but similar to normal SNe~Ia at a few weeks after maximum light (i.e. the transitional phase) and well into the nebular phase. The transparency timescales (t0t_0) for this sample of SNe~Ia range between \sim 25 and 41 days indicating a diversity in the ejecta masses. t0t_0 also weakly correlates with the peak bolometric luminosity, consistent with the interpretation that SNe with higher ejecta masses would produce more 56^{56}Ni. Comparing the t0t_0 and the maximum luminosity, Lmax_{max}\, distribution of a sample of SNe~Ia to predictions from a wide range of explosion models we find an indication that the sub-Chandrasekhar mass models span the range of observed values. However, the bright end of the distribution can be better explained by Chandrasekhar mass delayed detonation models, hinting at multiple progenitor channels to explain the observed bolometric properties of SNe~Ia. iPTF16abc appears to be consistent with the predictions from the Mch_{ch} models.Comment: 13 pages, 8 figures, accepted for publication in MNRA

    The nebular spectra of SN 2012aw and constraints on stellar nucleosynthesis from oxygen emission lines

    Get PDF
    We present nebular phase optical and near-infrared spectroscopy of the Type IIP supernova SN 2012aw combined with NLTE radiative transfer calculations applied to ejecta from stellar evolution/explosion models. Our spectral synthesis models generally show good agreement with the ejecta from a MZAMS = 15 Msun progenitor star. The emission lines of oxygen, sodium, and magnesium are all consistent with the nucleosynthesis in a progenitor in the 14 - 18 Msun range. We also demonstrate how the evolution of the oxygen cooling lines of [O I] 5577 A, [O I] 6300 A, and [O I] 6364 A can be used to constrain the mass of oxygen in the non-molecularly cooled ashes to < 1 Msun, independent of the mixing in the ejecta. This constraint implies that any progenitor model of initial mass greater than 20 Msun would be difficult to reconcile with the observed line strengths. A stellar progenitor of around MZAMS = 15 Msun can consistently explain the directly measured luminosity of the progenitor star, the observed nebular spectra, and the inferred pre-supernova mass-loss rate. We conclude that there is still no convincing example of a Type IIP explosion showing the nucleosynthesis expected from a MZAMS > 20 Msun progenitor.Comment: Accepted for publication in MNRA

    Detection of the spin character of Fe(001) surface states by scanning tunneling microscopy: A theoretical proposal

    Full text link
    We consider the magnetic structure on the Fe(001) surface and theoretically study the scanning tunneling spectroscopy using a spin-polarized tip (SP-STM). We show that minority-spin surface states induce a strong bias dependence of the tunneling differential conductance which largely depends on the orientation of the magnetization in the SP-STM tip relative to the easy magnetization axis in the Fe(001) surface. We propose to use this effect in order to determine the spin character of the Fe(001) surface states. This technique can be applied also to other magnetic surfaces in which surface states are observed.Comment: 5 pages, 4 figure

    Chandra and ASCA X-ray Observations of the Radio Supernova SN1979C IN NGC 4321

    Get PDF
    We report on the X-ray observation of the radio selected supernova SN1979C carried out with ASCA in 1997 December and serendipitously available from a Chandra Guaranteed Time Observation in 1999 November. The supernova, of type SN II-Linear (SN IIL), was first observed in the optical and occurred in the weakly barred, almost face on spiral galaxy NGC 4321 (M100). The galaxy, a member of the Virgo S cluster, is at a distance of 17.1 Mpc, and contains at least three other supernovae discovered in this century. The useful exposure time was ~25 ks for the Solid-State Imaging Spectrometer (SIS), ~28 ks for the Gas Scintillation Imaging Spectrometer (GIS), and ~2.5 ks for Chandra's Advanced CCD Imaging Spectrometer (ACIS). No point source was detected at the radio position of SN1979C in a 3' diameter half power response circle in the ASCA data. The background and galaxy subtracted SN signal had a 3sigma upper limit to the flux of 6.3x10^-14 ergs/s/cm^-2 in the full ASCA SIS band (0.4-10.0 keV) and a 3sigma upper limit of <3-4x10^-14 erg/s/cm^2 in the 2-10 keV band. In the Chandra data, a source at the position of SN1979C is marginally detected at energies below 2 keV at a flux consistent with the ROSAT HRI detection in 1995. At energies above 2 keV, no source is detected with an upper limit of ~3x10^-14 erg/s/cm^-2. These measurements give the first ever x-ray flux limit of a Type IIL SN above 2 keV which is an important diagnostic of the outgoing shock wave ploughing through the circumstellar medium.Comment: 8 pages, 2 figures, accepted A

    Inelastic scattering and heating in a molecular spin pump

    Full text link
    We consider a model for a spin field-effect molecular transistor, where a directed pure spin current is controlled by an external electric field. Inelastic scattering effects of such molecular device are discussed within a framework of full counting statistics for a multi-level molecular system. We propose that the heating of the molecular junction can be controlled by external electric and magnetic fields. Characteristic features of the model are demonstrated by numerical calculations.Comment: 9 pages, 5 figure
    corecore