7 research outputs found

    The Leucine Zipper Domains of the Transcription Factors GCN4 and c-Jun Have Ribonuclease Activity

    Get PDF
    Basic-region leucine zipper (bZIP) proteins are one of the largest transcription factor families that regulate a wide range of cellular functions. Owing to the stability of their coiled coil structure leucine zipper (LZ) domains of bZIP factors are widely employed as dimerization motifs in protein engineering studies. In the course of one such study, the X-ray structure of the retro-version of the LZ moiety of yeast transcriptional activator GCN4 suggested that this retro-LZ may have ribonuclease activity. Here we show that not only the retro-LZ but also the authentic LZ of GCN4 has weak but distinct ribonuclease activity. The observed cleavage of RNA is unspecific, it is not suppressed by the ribonuclease A inhibitor RNasin and involves the breakage of 3′,5′-phosphodiester bonds with formation of 2′,3′-cyclic phosphates as the final products as demonstrated by HPLC/electrospray ionization mass spectrometry. Several mutants of the GCN4 leucine zipper are catalytically inactive, providing important negative controls and unequivocally associating the enzymatic activity with the peptide under study. The leucine zipper moiety of the human factor c-Jun as well as the entire c-Jun protein are also shown to catalyze degradation of RNA. The presented data, which was obtained in the test-tube experiments, adds GCN4 and c-Jun to the pool of proteins with multiple functions (also known as moonlighting proteins). If expressed in vivo, the endoribonuclease activity of these bZIP-containing factors may represent a direct coupling between transcription activation and controlled RNA turnover. As an additional result of this work, the retro-leucine zipper of GCN4 can be added to the list of functional retro-peptides

    Solid Phase Chemistry for the Directed Synthesis of Biologically Active Polyamine Analogs, Derivatives, and Conjugates

    No full text

    Antimicrobial resistance of Staphylococcus aureus: genetic basis

    No full text
    corecore