1,998 research outputs found

    Detecting dark matter using centrifuging techniques

    Get PDF
    A new and inexpensive technique for detecting self interacting dark matter in the form of small grains in bulk matter is proposed. Depending on the interactions with ordinary matter, dark matter grains in bulk matter may be isolated by using a centrifuge and using ordinary matter as a filter. The case of mirror matter interacting with ordinary matter via photon-mirror photon kinetic mixing provides a concrete example of this type of dark matter candidate.Comment: About 9 page

    Detecting mirror matter on Earth via its thermal imprint on ordinary matter

    Full text link
    Mirror matter type dark matter can exist on the Earth's surface, potentially in enhanced concentrations at various anomalous impact sites. Mirror matter fragments can draw in heat from the ordinary matter environment, radiate mirror photons and thereby cool the surrounding ordinary matter. We quantify this effect and suggest that it could be used to help locate mirror matter deposits. This method, together with the centrifuge technique, seems to provide the most promising means to experimentally detect mirror matter type dark matter in the Earth.Comment: 9 page

    Ordinary atom-mirror atom bound states: A new window on the mirror world

    Full text link
    Mirror symmetry is a plausible candidate for a fundamental symmetry of particle interactions which can be exactly conserved if a set of mirror particles exist. The properties of the mirror particles seem to provide an excellent candidate to explain the inferred dark matter of the Universe and might also be responsible for a variety of other puzzles in particle physics, astrophysics, meteoritics and planetary science. One such puzzle -- the orthopositronium lifetime problem -- can be explained if there is a small kinetic mixing of ordinary and mirror photons. We show that this kinetic mixing implies the existence of ordinary atom - mirror atom bound states with interesting terrestrial and astrophysical implications. We suggest that sensitive mass spectroscopic studies of ordinary samples containing heavy elements such as lead might reveal the presence of these bound states, as they would appear as anomalously heavy elements. In addition to the effects of single mirror atoms, collective effects from embedded fragments of mirror matter (such as mirror iron microparticles) are also possible. We speculate that such mirror matter fragments might explain a mysterious UV photon burst observed coming from a laser irradiated lead target in a recent experiment.Comment: about 8 pages, couple of change

    Have mirror micrometeorites been detected?

    Full text link
    Slow-moving (v15v \sim 15 km/s) 'dark matter particles' have allegedly been discovered in a recent experiment. We explore the possibility that these slow moving dark matter particles are small mirror matter dust particles originating from our solar system. Ways of further testing our hypothesis, including the possibility of observing these dust particles in cryogenic detectors such as NAUTILUS, are also discussed.Comment: Few changes, about 8 pages lon

    Diurnal modulation signal from dissipative hidden sector dark matter

    Get PDF
    We consider a simple generic dissipative dark matter model: a hidden sector featuring two dark matter particles charged under an unbroken U(1)U(1)' interaction. Previous work has shown that such a model has the potential to explain dark matter phenomena on both large and small scales. In this framework, the dark matter halo in spiral galaxies features nontrivial dynamics, with the halo energy loss due to dissipative interactions balanced by a heat source. Ordinary supernovae can potentially supply this heat provided kinetic mixing interaction exists with strength ϵ109\epsilon \sim 10^{-9}. This type of kinetically mixed dark matter can be probed in direct detection experiments. Importantly, this self-interacting dark matter can be captured within the Earth and shield a dark matter detector from the halo wind, giving rise to a diurnal modulation effect. We estimate the size of this effect for detectors located in the Southern hemisphere, and find that the modulation is large (10%\gtrsim 10\%) for a wide range of parameters.Comment: 12 pages, 4 figures, clarifying comments and references adde

    Near infrared radiances observed by the UK C130 multi-channel radiometer during the marine stratocumulus IFO and preliminary comparison with model calculations

    Get PDF
    A preliminary analysis of some of the narrow band radiance data measured on the U.K. Meteorological Office's C130 aircraft during the marine stratocumulus intensive field observation of First ISCCP Regional Experiment (FIRE), San Diego 29 June to 18 July 1987, is presented. The data are compared with Monte Carlo calculations of the reflectance and transmittance of the cloud based upon the observed droplet size distribution. The main scientific question being addressed is whether there is any evidence of anomalous absorption within the cloud which had been observed in similar measurements (Rozenberg et al., 1974; Twomey and Cocks, 1982; Foot, 1988). The measurements also indicate the potential for remotely sensing cloud properties. The data and method of presentation discussed here clearly separates out clouds in terms of the size of the cloud droplets. All of the daytime C130 FIRE flights have been studied and are consistent with the data presented here. There appears to be no peculiarities that might arise, for example if pollution were to be a significant factor in determining cloud absorption. Variation in the inferred size parameters, r sub e, along runs are also very small

    Supernova explosions, 511 keV photons, gamma ray bursts and mirror matter

    Full text link
    There are three astroparticle physics puzzles which fire the imagination: the origin of the ``Great Positron Producer'' in the galactic bulge, the nature of the gamma-ray bursts central engine and the mechanism of supernova explosions. We show that the mirror matter model has the potential to solve all three of these puzzles in one beautifully simple strike.Comment: about 9 page

    Experimental implications of mirror matter-type dark matter

    Full text link
    Mirror matter-type dark matter is one dark matter candidate which is particularly well motivated from high energy physics. The theoretical motivation and experimental evidence are pedagogically reviewed, with emphasis on the implications of recent orthopositronium experiments, the DAMA/NaI dark matter search, anomalous meteorite events etc.Comment: about 12 pages lon

    Electric Charge Quantization

    Full text link
    Experimentally it has been known for a long time that the electric charges of the observed particles appear to be quantized. An approach to understanding electric charge quantization that can be used for gauge theories with explicit U(1)U(1) factors -- such as the standard model and its variants -- is pedagogically reviewed and discussed in this article. This approach uses the allowed invariances of the Lagrangian and their associated anomaly cancellation equations. We demonstrate that charge may be de-quantized in the three-generation standard model with massless neutrinos, because differences in family-lepton--numbers are anomaly-free. We also review the relevant experimental limits. Our approach to charge quantization suggests that the minimal standard model should be extended so that family-lepton--number differences are explicitly broken. We briefly discuss some candidate extensions (e.g. the minimal standard model augmented by Majorana right-handed neutrinos).Comment: 18 pages, LaTeX, UM-P-92/5
    corecore