50 research outputs found

    On multi-path longitudinal spin relaxation in brain tissue

    Full text link
    The purpose of this paper is to confirm previous reports that identified magnetization transfer (MT) as an inherent driver of longitudinal relaxation in brain tissue by asserting a substantial difference between the T1T_1 relaxation times of the free and the semi-solid spin pools. Further, we aim to identify an avenue towards the quantification of these relaxation processes on a voxel-by-voxel basis in a clinical imaging setting, i.e. with a nominal resolution of 1mm isotropic and full brain coverage in 12min. To this end, we optimized a hybrid-state pulse sequence for mapping the parameters of an unconstrained MT model. We scanned 4 people with relapsing-remitting multiple sclerosis (MS) and 4 healthy controls with this pulse sequence and estimated T1f≈1.90T_1^f \approx 1.90s and T1s≈0.327T_1^s \approx 0.327s for the free and semi-solid spin pool of healthy WM, respectively, confirming previous reports and questioning the commonly used assumptions T1s=T1fT_1^s = T_1^f or T1s=1T_1^s = 1s. Further, we estimated a fractional size of the semi-solid spin pool of m0s≈0.202m_0^s \approx 0.202, which is larger than previously assumed. An analysis of T1fT_1^f in normal appearing white matter revealed statistically significant differences between individuals with MS and controls. In conclusion, we confirm that longitudinal spin relaxation in brain tissue is dominated by MT and that the hybrid state facilitates a voxel-wise fit of the unconstrained MT model, which enables the analysis of subtle neurodegeneration

    4D flow imaging with 2D-selective excitation

    No full text
    PURPOSE: 4D flow MRI permits to quantify non-invasively time-dependent velocity vector fields, but it demands long acquisition times. 2D-selective excitation allows to accelerate the acquisition by reducing the FOV in both phase encoding directions. In this study, we investigate 2D-selective excitation with reduced FOV imaging for fast 4D flow imaging while obtaining correct velocity quantification. METHODS: Two different 2D-selective excitation pulses were designed using spiral k-space trajectories. Further, their isophase time point was analyzed using simulations that considered both stationary and moving spins. On this basis, the 2D-selective RF pulses were implemented into a 4D flow sequence. A flow phantom study and seven 4D flow in vivo measurements were performed to assess the accuracy of velocity quantification by comparing the proposed technique to non-selective and conventional 1D slab-selective excitation. RESULTS: The isophase time point for spiral 2D-selective RF pulses was found to be located at the end of excitation for both stationary and moving spins. Based on that, 2D-selective excitation with reduced FOV allowed us to successfully quantify velocities both in a flow phantom and in vivo. In a flow phantom, the velocity difference Δv = (0.8 ± 5.3)cm/s between the smaller reduced FOV and the reference scan was similar to the inter-scan variability of Δv = (−1.0 ± 2.3)cm/s . In vivo, the differences in flow (P = 0.995) and flow volume (P = 0.469) between the larger reduced FOV and the reference scan were non-significant. By reducing the FOV by two-thirds, acquisition time was halved. CONCLUSION: A reduced field-of-excitation allows to limit the FOV and therefore shorten 4D flow acquisition times while preserving successful velocity quantification
    corecore