966 research outputs found

    Can formaldehyde exposure induce histopathologic and morphometric changes on rat kidney? [¿la exposición al formaldehído puede inducir cambios histopatológicos y morfométricos sobre el riñón de rata?]

    Get PDF
    Formaldehyde is used traditionally for fixing the cadaver, and vaporized during dissection and practical studying on cadaver. This study was designed to determine the histopathologic and morphometric changes of rat kidney while all of the experiments were exposed to formaldehyde for 18 weeks. 28 male albino Wistar rats were divided into the following three experimental groups (E1: 2hrs/d, 2d/w; E2: 2hrs/d, 4d/w; E3: 4hrs/d, 4d/w) and one control group (C). when the exposure period was expired the animals were anaesthetized with chloroform. After cervical dislocation, the abdomen was dissected and the kidneys were taken. The kidney specimens were sectioned and stained with Haematoxylin and Eosin technique for histologic and morphometric study. Data were obtained from an Olympus light microscope and the analyzed with spss (version 11.5) and ANOVA test. In all histopathology sections of groups E1, E2 and E3, these similar changes were seen: mild glumerolar congestion, focal congestion, and vacuolar degeneration of tubular cells. There were no evidences of inflammatory cells infiltration or fibrotic changes of interstitial tissue. Only mild, non-specific congestion was seen in cortical vessels. Also there were not any abnormalities in the staining of nucleus and cytoplasm. According to Morphometric study, Mean ±SD of glomerulus's area in control, E1, E2 and E3 group were 10802.66±1038.18, 10759.50±1971.88, 10434.73±1763.76 and 10077.64±2068.78 micrometer, respectively. Mean ±SD inner proximal tubule diameter in control, E1, E2 and E3 group were 16.16±2.49, 16.92±2.90, 16.31±2.79 and15.66±4.11 μm, respectively. Mean ±SD of inner distal tubule diameter in control, E1, E2 and E3 group were 15.96±4.47, 16.20±1.66, 16.96±1.63 and17.45±3.26 μm, respectively. These differences were not significant between cases and control. This study showed that formaldehyde inhalation in 1.5 ppm can not make specific Histopathologic and Morphometric changes in rat kidney

    The granule cell density of the dentate gyrus following administration of Urtica dioica extract to young diabetic rats

    Get PDF
    Urtica dioica L. Stinging nettle has long been known worldwide as a medicinal plant. To study the benefits of the nettle in diabetic encephalopathy, the granule cell density of the dentate gyrus of diabetic rats was studied following administration of Urtica dioica extract. A total of 24 male albino Wistar rats were allocated equally to normal, diabetic, preventive and treatment groups. Hyperglycaemia was induced by streptozotocin (80 mg/kg) in the animals of the diabetic and treatment groups. One week after injection of the streptozotocin the animals in the treatment group received a hydroalcoholic extract of Urtica dioica (100 mg/kg/day) for 4 weeks intraperitoneally. The rats of the preventive group received hydroalcoholic extract of U. dioica (100 mg/kg/day) IP for the first 5 days and an injection of streptozotocin (80 mg/kg) on the 6th day. After 5 weeks of study all the rats were sacrificed and coronal sections were taken from the dorsal hippocampal formation of the right cerebral hemispheres and stained with cresyl violet. The area densities of the granule cells were measured and compared in the four groups. The density was lower in the diabetic rats compared with the controls (p > 0.05). The preventive group showed lower cell density than the controls (p > 0.05). The densities in the treated rats were higher than in the diabetic rats (p > 0.05). Furthermore, the control and treated rats showed similar densities (p > 0.05). It seems that U. dioica extract can help compensate for granule cell loss in the diabetic rat dentate gyrus, which can ameliorate cognitive impairment in diabetes. However, preventive use of the extract showed no significant benefit. Copyright © 2008 Via Medica

    2D:4D Suggests a Role of Prenatal Testosterone in Gender Dysphoria

    Get PDF
    Gender dysphoria (GD) reflects distress caused by incongruence between one’s experienced gender identity and one’s natal (assigned) gender. Previous studies suggest that high levels of prenatal testosterone (T) in natal females and low levels in natal males might contribute to GD. Here, we investigated if the 2D:4D digit ratio, a biomarker of prenatal T effects, is related to GD. We first report results from a large Iranian sample, comparing 2D:4D in 104 transwomen and 89 transmen against controls of the same natal sex. We found significantly lower (less masculine) 2D:4D in transwomen compared to control men. We then conducted random-effects meta-analyses of relevant studies including our own (k = 6, N = 925 for transwomen and k = 6, N = 757 for transmen). In line with the hypothesized prenatal T effects, transwomen showed significantly feminized 2D:4D (d ≈ 0.24). Conversely, transmen showed masculinized 2D:4D (d ≈ − 0.28); however, large unaccounted heterogeneity across studies emerged, which makes this effect less meaningful. These findings support the idea that high levels of prenatal T in natal females and low levels in natal males play a part in the etiology of GD. As we discuss, this adds to the evidence demonstrating the convergent validity of 2D:4D as a marker of prenatal T effects

    Resistance of CA1 pyramidal cells to STZ-induced diabetes in young rats

    Get PDF
    The pyramidal cell density of CA1 hippocampal subfield following STZ-induced diabetes in young rats were studied. 12 male albino 6-week Wistar rats were allocated equally in groups of normal and diabetic. Hyperglycemia induced by Streptozotocin (80 mg/kg) in animals of diabetic group. After 5 weeks of study, all the rats were sacrificed and coronal sections were taken from dorsal hippocampal formation of the right cerebral hemispheres and stained with crysel violet. The area densities of the CA1 pyramidal cells were measured and compared among two groups. No significant difference between the densities of two experimental groups was found. The results can arise from the short period of diabetes and also the possible regenerative processes in developing brain of the young diabetic rats which compensated significant diabetes-induced neuronal loss

    Formaldehyde exposure induces histopathological and morphometric changes in the rat testis

    Get PDF
    Formaldehyde is a chemical which is traditionally used for fixing cadavers and routine histopathology techniques. It is vaponsed during the dissection and practical study of a cadaver. Previous studies have shown that this vapour may cause clinical symptoms such as throat, eye, skin and nasal irritation. This study was designed to determine the histopathology and morphometrics of the rat testis when all the experimental animals were exposed to formaldehyde for 18 weeks. The study was performed in 2004 on 28 albino Wistar rats of 6-7 postnatal weeks. The rats were divided into three case groups (E1: 4 h/d, 4 d/w; E2: 2 h/d, 4 d/w; E3: 2 h/d, 2 d/w) and one control group. The testes specimens were sectioned at 5 μm and stained with the haematoxylin and eosin staining technique for histological and morphometrical studies. We found a severe decrease in germ cells associated with spermatogenesis arrest in the E1 group. A decrease in germ cells and a thickening of the basal membrane of the seminiferous tubules were seen in E2. Displacement of Sertoli and germinal cells were also found in the E3 group. The mean seminiferous tubular diameter and seminiferous epithelial height in the experimental groups were decreased in comparison with the control group and the differences were statistically significant (p < 0. 05). The findings of this study revealed that chronic formaldehyde exposure can cause histopathological and morphometric changes to the seminiferous epithelium in rats and that these changes depend on the duration of the formaldehyde exposure. Copyright © 2007 Via Medica

    Analytic height correlation function of rough surfaces derived from light scattering

    Get PDF
    We derive an analytic expression for the height correlation function of a rough surface based on the inverse wave scattering method of Kirchhoff theory. The expression directly relates the height correlation function to diffuse scattered intensity along a linear path at fixed polar angle. We test the solution by measuring the angular distribution of light scattered from rough silicon surfaces, and comparing extracted height correlation functions to those derived from atomic force microscopy (AFM). The results agree closely with AFM over a wider range of roughness parameters than previous formulations of the inverse scattering problem, while relying less on large-angle scatter data. Our expression thus provides an accurate analytical equation for the height correlation function of a wide range of surfaces based on measurements using a simple, fast experimental procedure.Comment: 6 pages, 5 figures, 1 tabl
    • …
    corecore