1,688 research outputs found
Generalized Chaplygin gas with and the cosmological model
The generalized Chaplygin gas model is characterized by the equation of state
. It is generally stated that the case is equivalent to a model with cosmological constant and dust (). In this work we show that, if this is true for the background equations,
this is not true for the perturbation equations. Hence, the mass spectrum
predicted for both models may differ.Comment: Latex file, 4 pages, 2 figures in eps forma
Density perturbations in an Universe dominated by the Chaplygin gas
We study the fate of density perturbations in an Universe dominate by the
Chaplygin gas, which exhibit negative pressure. We show that it is possible to
obtain the value for the density contrast observed in large scale structure of
the Universe by fixing a free parameter in the equation of state of this gas.
The negative character of pressure must be significant only very recently.Comment: Latex file, 5 page
Modeling the spectrum of gravitational waves in the primordial Universe
Recent observations from type Ia Supernovae and from cosmic microwave
background (CMB) anisotropies have revealed that most of the matter of the
Universe interacts in a repulsive manner, composing the so-called dark energy
constituent of the Universe. The analysis of cosmic gravitational waves (GW)
represents, besides the CMB temperature and polarization anisotropies, an
additional approach in the determination of parameters that may constrain the
dark energy models and their consistence. In recent work, a generalized
Chaplygin gas model was considered in a flat universe and the corresponding
spectrum of gravitational waves was obtained. The present work adds a massless
gas component to that model and the new spectrum is compared to the previous
one. The Chaplygin gas is also used to simulate a -CDM model by means
of a particular combination of parameters so that the Chaplygin gas and the
-CDM models can be easily distinguished in the theoretical scenarios
here established. The lack of direct observational data is partialy solved when
the signature of the GW on the CMB spectra is determined.Comment: Proc. of the Conference on Magnetic Fields in the Universe: from
laboratories and stars to primordial structures, AIP(NY), eds. E. M. de
Gouveia Dal Pino, G. Lugones & A. Lazarian (2005), in press. (8 pages, 11
figures
About Starobinsky inflation
It is believed that soon after the Planck era, space time should have a
semi-classical nature. According to this, the escape from General Relativity
theory is unavoidable. Two geometric counter-terms are needed to regularize the
divergences which come from the expected value. These counter-terms are
responsible for a higher derivative metric gravitation. Starobinsky idea was
that these higher derivatives could mimic a cosmological constant. In this work
it is considered numerical solutions for general Bianchi I anisotropic
space-times in this higher derivative theory. The approach is ``experimental''
in the sense that there is no attempt to an analytical investigation of the
results. It is shown that for zero cosmological constant , there are
sets of initial conditions which form basins of attraction that asymptote
Minkowski space. The complement of this set of initial conditions form basins
which are attracted to some singular solutions. It is also shown, for a
cosmological constant that there are basins of attraction to a
specific de Sitter solution. This result is consistent with Starobinsky's
initial idea. The complement of this set also forms basins that are attracted
to some type of singular solution. Because the singularity is characterized by
curvature scalars, it must be stressed that the basin structure obtained is a
topological invariant, i.e., coordinate independent.Comment: Version accepted for publication in PRD. More references added, a few
modifications and minor correction
Gaussian superpositions in scalar-tensor quantum cosmological models
A free scalar field minimally coupled to gravity model is quantized and the
Wheeler-DeWitt equation in minisuperspace is solved analytically, exhibiting
positive and negative frequency modes. The analysis is performed for positive,
negative and zero values of the curvature of the spatial section. Gaussian
superpositions of the modes are constructed, and the quantum bohmian
trajectories are determined in the framework of the Bohm-de Broglie
interpretation of quantum cosmology. Oscillating universes appear in all cases,
but with a characteristic scale of the order of the Planck scale. Bouncing
regular solutions emerge for the flat curvature case. They contract classically
from infinity until a minimum size, where quantum effects become important
acting as repulsive forces avoiding the singularity and creating an
inflationary phase, expanding afterwards to an infinite size, approaching the
classical expansion as long as the scale factor increases. These are
non-singular solutions which are viable models to describe the early Universe.Comment: 14 pages, LaTeX, 3 Postscript figures, uses graficx.st
A Born-Infeld-like f(R) gravity
Several features of an theory in which there is a maximum value for
the curvature are analyzed. The theory admits the vaccuum solutions of GR, and
also the radiation evolution for the scale factor of the standard cosmological
model. Working in the Jordan frame, a complete analysis of the phase space is
performed, and its results supported with examples obtainted by numerical
integration. In particular, we showed that theory has nonsingular cosmological
solutions which after the bounce enter a phase of de Sitter expansion and
subsequently relax to a GR-like radiation-dominated evolution.Comment: Latex file, 14 pages, 7 figures (jpg format), including more detailed
discussions than previous version, accepted for publication in Physical
Review
Inhomogeneous vacuum energy
Vacuum energy remains the simplest model of dark energy which could drive the
accelerated expansion of the Universe without necessarily introducing any new
degrees of freedom. Inhomogeneous vacuum energy is necessarily interacting in
general relativity. Although the four-velocity of vacuum energy is undefined,
an interacting vacuum has an energy transfer and the vacuum energy defines a
particular foliation of spacetime with spatially homogeneous vacuum energy in
cosmological solutions. It is possible to give a consistent description of
vacuum dynamics and in particular the relativistic equations of motion for
inhomogeneous perturbations given a covariant prescription for the vacuum
energy, or equivalently the energy transfer four-vector, and we construct
gauge-invariant vacuum perturbations. We show that any dark energy cosmology
can be decomposed into an interacting vacuum+matter cosmology whose
inhomogeneous perturbations obey simple first-order equations.Comment: 8 pages; v2 clarified discussion of Chaplygin gas model, references
adde
- …