1,688 research outputs found

    Generalized Chaplygin gas with α=0\alpha = 0 and the ΛCDM\Lambda CDM cosmological model

    Full text link
    The generalized Chaplygin gas model is characterized by the equation of state p=Aραp = - \frac{A}{\rho^\alpha}. It is generally stated that the case α=0\alpha = 0 is equivalent to a model with cosmological constant and dust (ΛCDM\Lambda CDM). In this work we show that, if this is true for the background equations, this is not true for the perturbation equations. Hence, the mass spectrum predicted for both models may differ.Comment: Latex file, 4 pages, 2 figures in eps forma

    Density perturbations in an Universe dominated by the Chaplygin gas

    Get PDF
    We study the fate of density perturbations in an Universe dominate by the Chaplygin gas, which exhibit negative pressure. We show that it is possible to obtain the value for the density contrast observed in large scale structure of the Universe by fixing a free parameter in the equation of state of this gas. The negative character of pressure must be significant only very recently.Comment: Latex file, 5 page

    Modeling the spectrum of gravitational waves in the primordial Universe

    Full text link
    Recent observations from type Ia Supernovae and from cosmic microwave background (CMB) anisotropies have revealed that most of the matter of the Universe interacts in a repulsive manner, composing the so-called dark energy constituent of the Universe. The analysis of cosmic gravitational waves (GW) represents, besides the CMB temperature and polarization anisotropies, an additional approach in the determination of parameters that may constrain the dark energy models and their consistence. In recent work, a generalized Chaplygin gas model was considered in a flat universe and the corresponding spectrum of gravitational waves was obtained. The present work adds a massless gas component to that model and the new spectrum is compared to the previous one. The Chaplygin gas is also used to simulate a Λ\Lambda-CDM model by means of a particular combination of parameters so that the Chaplygin gas and the Λ\Lambda-CDM models can be easily distinguished in the theoretical scenarios here established. The lack of direct observational data is partialy solved when the signature of the GW on the CMB spectra is determined.Comment: Proc. of the Conference on Magnetic Fields in the Universe: from laboratories and stars to primordial structures, AIP(NY), eds. E. M. de Gouveia Dal Pino, G. Lugones & A. Lazarian (2005), in press. (8 pages, 11 figures

    About Starobinsky inflation

    Full text link
    It is believed that soon after the Planck era, space time should have a semi-classical nature. According to this, the escape from General Relativity theory is unavoidable. Two geometric counter-terms are needed to regularize the divergences which come from the expected value. These counter-terms are responsible for a higher derivative metric gravitation. Starobinsky idea was that these higher derivatives could mimic a cosmological constant. In this work it is considered numerical solutions for general Bianchi I anisotropic space-times in this higher derivative theory. The approach is ``experimental'' in the sense that there is no attempt to an analytical investigation of the results. It is shown that for zero cosmological constant Λ=0\Lambda=0, there are sets of initial conditions which form basins of attraction that asymptote Minkowski space. The complement of this set of initial conditions form basins which are attracted to some singular solutions. It is also shown, for a cosmological constant Λ>0\Lambda> 0 that there are basins of attraction to a specific de Sitter solution. This result is consistent with Starobinsky's initial idea. The complement of this set also forms basins that are attracted to some type of singular solution. Because the singularity is characterized by curvature scalars, it must be stressed that the basin structure obtained is a topological invariant, i.e., coordinate independent.Comment: Version accepted for publication in PRD. More references added, a few modifications and minor correction

    Gaussian superpositions in scalar-tensor quantum cosmological models

    Get PDF
    A free scalar field minimally coupled to gravity model is quantized and the Wheeler-DeWitt equation in minisuperspace is solved analytically, exhibiting positive and negative frequency modes. The analysis is performed for positive, negative and zero values of the curvature of the spatial section. Gaussian superpositions of the modes are constructed, and the quantum bohmian trajectories are determined in the framework of the Bohm-de Broglie interpretation of quantum cosmology. Oscillating universes appear in all cases, but with a characteristic scale of the order of the Planck scale. Bouncing regular solutions emerge for the flat curvature case. They contract classically from infinity until a minimum size, where quantum effects become important acting as repulsive forces avoiding the singularity and creating an inflationary phase, expanding afterwards to an infinite size, approaching the classical expansion as long as the scale factor increases. These are non-singular solutions which are viable models to describe the early Universe.Comment: 14 pages, LaTeX, 3 Postscript figures, uses graficx.st

    A Born-Infeld-like f(R) gravity

    Full text link
    Several features of an f(R)f(R) theory in which there is a maximum value for the curvature are analyzed. The theory admits the vaccuum solutions of GR, and also the radiation evolution for the scale factor of the standard cosmological model. Working in the Jordan frame, a complete analysis of the phase space is performed, and its results supported with examples obtainted by numerical integration. In particular, we showed that theory has nonsingular cosmological solutions which after the bounce enter a phase of de Sitter expansion and subsequently relax to a GR-like radiation-dominated evolution.Comment: Latex file, 14 pages, 7 figures (jpg format), including more detailed discussions than previous version, accepted for publication in Physical Review

    Inhomogeneous vacuum energy

    Get PDF
    Vacuum energy remains the simplest model of dark energy which could drive the accelerated expansion of the Universe without necessarily introducing any new degrees of freedom. Inhomogeneous vacuum energy is necessarily interacting in general relativity. Although the four-velocity of vacuum energy is undefined, an interacting vacuum has an energy transfer and the vacuum energy defines a particular foliation of spacetime with spatially homogeneous vacuum energy in cosmological solutions. It is possible to give a consistent description of vacuum dynamics and in particular the relativistic equations of motion for inhomogeneous perturbations given a covariant prescription for the vacuum energy, or equivalently the energy transfer four-vector, and we construct gauge-invariant vacuum perturbations. We show that any dark energy cosmology can be decomposed into an interacting vacuum+matter cosmology whose inhomogeneous perturbations obey simple first-order equations.Comment: 8 pages; v2 clarified discussion of Chaplygin gas model, references adde
    corecore