438 research outputs found
Dissipation and memory effects in pure glue deconfinement
We investigate the effects of dissipation in the deconfining transition for a
pure SU(2) gauge theory. Using an effective model for the order parameter, we
study its Langevin evolution numerically, and compare results from local
additive noise dynamics to those obtained considering an exponential non-local
kernel for early times.Comment: 4 pages, 2 figures, to appear in the proceedings of Strong and
Electroweak Matter (SEWM06), BNL, May 200
Inverse spectral problems for Sturm--Liouville operators with matrix-valued potentials
We give a complete description of the set of spectral data (eigenvalues and
specially introduced norming constants) for Sturm--Liouville operators on the
interval with matrix-valued potentials in the Sobolev space
and suggest an algorithm reconstructing the potential from the spectral data
that is based on Krein's accelerant method.Comment: 39 pages, uses iopart.cls, iopams.sty and setstack.sty by IO
Meromorphic Solutions to a Differential--Difference Equation Describing Certain Self-Similar Potentials
In this paper we prove the existence of meromorphic solutions to a nonlinear
differential difference equation that describe certain self-similar potentials
for the Schroedinger operator.Comment: 10 pages, LaTeX, uses additional package
Optimization of quasi-normal eigenvalues for Krein-Nudelman strings
The paper is devoted to optimization of resonances for Krein strings with
total mass and statical moment constraints. The problem is to design for a
given a string that has a resonance on the line \alpha + \i
\R with a minimal possible modulus of the imaginary part. We find optimal
resonances and strings explicitly.Comment: 9 pages, these results were extracted in a slightly modified form
from the earlier e-print arXiv:1103.4117 [math.SP] following an advise of a
journal's refere
Spectral singularities for Non-Hermitian one-dimensional Hamiltonians: puzzles with resolution of identity
We examine the completeness of bi-orthogonal sets of eigenfunctions for
non-Hermitian Hamiltonians possessing a spectral singularity. The correct
resolutions of identity are constructed for delta like and smooth potentials.
Their form and the contribution of a spectral singularity depend on the class
of functions employed for physical states. With this specification there is no
obstruction to completeness originating from a spectral singularity.Comment: 25 pages, more refs adde
A variational approach to strongly damped wave equations
We discuss a Hilbert space method that allows to prove analytical
well-posedness of a class of linear strongly damped wave equations. The main
technical tool is a perturbation lemma for sesquilinear forms, which seems to
be new. In most common linear cases we can furthermore apply a recent result
due to Crouzeix--Haase, thus extending several known results and obtaining
optimal analyticity angle.Comment: This is an extended version of an article appeared in
\emph{Functional Analysis and Evolution Equations -- The G\"unter Lumer
Volume}, edited by H. Amann et al., Birkh\"auser, Basel, 2008. In the latest
submission to arXiv only some typos have been fixe
Polarizational stopping power of heavy-ion diclusters in two-dimensional electron liquids
The in-plane polarizational stopping power of heavy-ion diclusters in a
two-dimensional strongly coupled electron liquid is studied. Analytical
expressions for the stopping power of both fast and slow projectiles are
derived. To go beyond the random-phase approximation we make use of the inverse
dielectric function obtained by means of the method of moments and some recent
analytical expressions for the static local-field correction factor.Comment: 9 pages, 5 figures. Published in Physical Review B
http://link.aps.org/abstract/PRB/v75/e11510
Spherical Functions Associated With the Three Dimensional Sphere
In this paper, we determine all irreducible spherical functions \Phi of any K
-type associated to the pair (G,K)=(\SO(4),\SO(3)). This is accomplished by
associating to \Phi a vector valued function H=H(u) of a real variable u, which
is analytic at u=0 and whose components are solutions of two coupled systems of
ordinary differential equations. By an appropriate conjugation involving Hahn
polynomials we uncouple one of the systems. Then this is taken to an uncoupled
system of hypergeometric equations, leading to a vector valued solution P=P(u)
whose entries are Gegenbauer's polynomials. Afterward, we identify those
simultaneous solutions and use the representation theory of \SO(4) to
characterize all irreducible spherical functions. The functions P=P(u)
corresponding to the irreducible spherical functions of a fixed K-type \pi_\ell
are appropriately packaged into a sequence of matrix valued polynomials
(P_w)_{w\ge0} of size (\ell+1)\times(\ell+1). Finally we proved that \widetilde
P_w={P_0}^{-1}P_w is a sequence of matrix orthogonal polynomials with respect
to a weight matrix W. Moreover we showed that W admits a second order symmetric
hypergeometric operator \widetilde D and a first order symmetric differential
operator \widetilde E.Comment: 49 pages, 2 figure
Fractional Derivative as Fractional Power of Derivative
Definitions of fractional derivatives as fractional powers of derivative
operators are suggested. The Taylor series and Fourier series are used to
define fractional power of self-adjoint derivative operator. The Fourier
integrals and Weyl quantization procedure are applied to derive the definition
of fractional derivative operator. Fractional generalization of concept of
stability is considered.Comment: 20 pages, LaTe
- …