30 research outputs found
Quaternion singular spectrum analysis of electroencephalogram With application in sleep analysis
A novel quaternion-valued singular spectrum analysis (SSA) is introduced for multichannel analysis of electroencephalogram (EEG). The analysis of EEG typically requires the decomposition of data channels into meaningful components despite the notoriously noisy nature of EEG - which is the aim of SSA. However, the singular value decomposition involved in SSA implies the strict orthogonality of the decomposed components, which may not reflect accurately the sources which exhibit similar neural activities. To allow for the modelling of such co-channel coupling, the quaternion domain is considered for the first time to formulate the SSA using the augmented statistics. As an application, we demonstrate how the augmented quaternion-valued SSA (AQSSA) can be used to extract the sources, even at a signal-to-noise ratio as low as -10 dB. To illustrate the usefulness of our quaternion-valued SSA in a rehabilitation setting, we employ the proposed SSA for sleep analysis to extract statistical descriptors for five-stage classification (Awake, N1, N2, N3 and REM). The level of agreement using these descriptors was 74% as quantified by the Cohen's kappa
Novel quaternion matrix factorisations
The recent introduction of η-Hermitian matrices A = AηH has
opened a new avenue of research in quaternion signal processing.
However, the exploitation of this matrix structure has been limited,
perhaps due to the lack of joint diagonalisation methodologies of
these matrices. As such, we propose novel decompositions of η-
Hermitian matrices to address this shortcoming in the literature. As
an application, we consider a blind source separation problem in
the form of an Alamouti-based communication system. Simulation
studies demonstrate the effectiveness of our proposed joint diagonalisation
technique and indicate that our approach is particularly
useful when the sources are correlated
Classification of awake, REM, and NREM from EEG via singular spectrum analysis
© 2015 IEEE. In this study, a single-channel electroencephalography (EEG) analysis method has been proposed for automated 3-state-sleep classification to discriminate Awake, NREM (non-rapid eye movement) and REM (rapid eye movement). For this purpose, singular spectrum analysis (SSA) is applied to automatically extract four brain rhythms: delta, theta, alpha, and beta. These subbands are then used to generate the appropriate features for sleep classification using a multi class support vector machine (M-SVM). The proposed method provided 0.79 agreement between the manual and automatic scores
Quaternion Common Spatial Patterns
A novel quaternion-valued common spatial patterns (QCSP) algorithm is introduced to model co-channel coupling of multi-dimensional processes. To cater for the generality of quaternion-valued non-circular data, we propose a generalized QCSP (G-QCSP) which incorporates the information on power difference between the real and imaginary parts of data channels. As an application, we demonstrate how G-QCSP can be used to provide high classification rates, even at a signal-to-noise ratio (SNR) as low as -10 dB. To illustrate the usefulness of our method in EEG analysis, we employ G-QCSP to extract features for discriminating between imagery left and right hand movements. The classification accuracy using these features is 70%. Furthermore, the proposed method is used to distinguish between Parkinson's disease (PD) patients and healthy control subjects, providing an accuracy of 87%
Real Time Hand Movement Trajectory Tracking for Enhancing Dementia Screening in Ageing Deaf Signers of British Sign Language
Real time hand movement trajectory tracking based on machine learning approaches may assist the early identification of dementia in ageing Deaf individuals who are users of British Sign Language (BSL), since there are few clinicians with appropriate communication skills, and a shortage of sign language interpreters. Unlike other computer vision systems used in dementia stage assessment such as RGB-D video with the aid of depth camera, activities of daily living (ADL) monitored by information and communication technologies (ICT) facilities, or X-Ray, computed tomography (CT), and magnetic resonance imaging (MRI) images fed to machine learning algorithms, the system developed here focuses on analysing the sign language space envelope(sign trajectories/depth/speed) and facial expression of deaf individuals, using normal 2D videos. In this work, we are interested in providing a more accurate segmentation of objects of interest in relation to the background, so that accurate real-time hand trajectories (path of the trajectory and speed) can be achieved. The paper presents and evaluates two types of hand movement trajectory models. In the first model, the hand sign trajectory is tracked by implementing skin colour segmentation. In the second model, the hand sign trajectory is tracked using Part Afinity Fields based on the OpenPose Skeleton Model [1, 2]. Comparisons of results between the two different models demonstrate that the second model provides enhanced improvements in terms of tracking accuracy and robustness of tracking. The pattern differences in facial and trajectory motion data achieved from the presented models will be beneficial not only for screening of deaf individuals for dementia, but also for assessment of other acquired neurological impairments associated with motor changes, for example, stroke and Parkinsons disease