84 research outputs found

    Vector-virus interaction affects viral loads and co-occurrence

    Get PDF
    BackgroundVector-borne viral diseases threaten human and wildlife worldwide. Vectors are often viewed as a passive syringe injecting the virus. However, to survive, replicate and spread, viruses must manipulate vector biology. While most vector-borne viral research focuses on vectors transmitting a single virus, in reality, vectors often carry diverse viruses. Yet how viruses affect the vectors remains poorly understood. Here, we focused on the varroa mite (Varroa destructor), an emergent parasite that can carry over 20 honey bee viruses, and has been responsible for colony collapses worldwide, as well as changes in global viral populations. Co-evolution of the varroa and the viral community makes it possible to investigate whether viruses affect vector gene expression and whether these interactions affect viral epidemiology.ResultsUsing a large set of available varroa transcriptomes, we identified how abundances of individual viruses affect the vector’s transcriptional network. We found no evidence of competition between viruses, but rather that some virus abundances are positively correlated. Furthermore, viruses that are found together interact with the vector’s gene co-expression modules in similar ways, suggesting that interactions with the vector affect viral epidemiology. We experimentally validated this observation by silencing candidate genes using RNAi and found that the reduction in varroa gene expression was accompanied by a change in viral load.ConclusionsCombined, the meta-transcriptomic analysis and experimental results shed light on the mechanism by which viruses interact with each other and with their vector to shape the disease course

    Plasma Kallikrein Mediates Retinal Vascular Dysfunction and Induces Retinal Thickening in Diabetic Rats

    Get PDF
    Objective: Plasma kallikrein (PK) has been identified in vitreous fluid obtained from individuals with diabetic retinopathy and has been implicated in contributing to retinal vascular dysfunction. In this report, we examined the effects of PK on retinal vascular functions and thickness in diabetic rats. Research Design and Methods: We investigated the effects of a selective PK inhibitor, ASP-440, and C1 inhibitor (C1-INH), the primary physiological inhibitor of PK, on retinal vascular permeability (RVP) and hemodynamics in rats with streptozotocin-induced diabetes. The effect of intravitreal PK injection on retinal thickness was examined by spectral domain optical coherence tomography. Results: Systemic continuous administration of ASP-440 for 4 weeks initiated at the time of diabetes onset inhibited RVP by 42% (P = 0.013) and 83% (P < 0.001) at doses of 0.25 and 0.6 mg/kg per day, respectively. Administration of ASP-440 initiated 2 weeks after the onset of diabetes ameliorated both RVP and retinal blood flow abnormalities in diabetic rats measured at 4 weeks’ diabetes duration. Intravitreal injection of C1-INH similarly decreased impaired RVP in rats with 2 weeks’ diabetes duration. Intravitreal injection of PK increased both acute RVP and sustained focal RVP (24 h postinjection) to a greater extent in diabetic rats compared with nondiabetic control rats. Intravitreal injection of PK increased retinal thickness compared with baseline to a greater extent (P = 0.017) in diabetic rats (from 193 ±\pm 10 μ\mum to 223 ±\pm 13 μ\mum) compared with nondiabetic rats (from 182 ±\pm 8 μ\mum to 193 ±\pm 9 μ\mum). Conclusions: These results show that PK contributes to retinal vascular dysfunctions in diabetic rats and that the combination of diabetes and intravitreal injection of PK in rats induces retinal thickening

    Evolutionarily diverse origins of deformed wing viruses in western honey bees

    Get PDF
    Novel transmission routes can allow infectious diseases to spread, often with devastating consequences. Ectoparasitic varroa mites vector a diversity of RNA viruses, having switched hosts from the eastern to western honey bees (Apis cerana to Apis mellifera). They provide an opportunity to explore how novel transmission routes shape disease epidemiology. As the principal driver of the spread of deformed wing viruses (mainly DWV-A and DWV-B), varroa infestation has also driven global honey bee health declines. The more virulent DWV-B strain has been replacing the original DWV-A strain in many regions over the past two decades. Yet, how these viruses originated and spread remains poorly understood. Here, we use a phylogeographic analysis based on whole-genome data to reconstruct the origins and demography of DWV spread. We found that, rather than reemerging in western honey bees after varroa switched hosts, as suggested by previous work, DWV-A most likely originated in East Asia and spread in the mid-20th century. It also showed a massive population size expansion following the varroa host switch. By contrast, DWV-B was most likely acquired more recently from a source outside East Asia and appears absent from the original varroa host. These results highlight the dynamic nature of viral adaptation, whereby a vector's host switch can give rise to competing and increasingly virulent disease pandemics. The evolutionary novelty and rapid global spread of these host-virus interactions, together with observed spillover into other species, illustrate how increasing globalization poses urgent threats to biodiversity and food security

    Diabetic retinopathy: current and future methods for early screening from a retinal hemodynamic and geometric approach

    Get PDF
    Diabetic retinopathy (DR) is a major disease and is the number one cause of blindness in the UK. In England alone, 4200 new cases appear every year and 1280 lead to blindness. DR is a result of diabetes mellitus, which affects the retina of the eye and specifically the vessel structure. Elevated levels of glucose cause a malfunction in the cell structure, which affects the vessel wall and, in severe conditions, leads to their breakage. Much research has been carried out on detecting the different stages of DR but not enough versatile research has been carried out on the detection of early DR before the appearance of any lesions. In this review, the authors approach the topic from the functional side of the human eye and how hemodynamic factors that are impaired by diabetes affect the vascular structur

    Relationship between the morphology of the foveal avascular zone, retinal structure, and macular circulation in patients with diabetes mellitus

    Get PDF
    Diabetic Retinopathy (DR) is an extremely severe and common degenerative disease. The purpose of this study was to quantify the relationship between various parameters including the Foveal Avascular Zone (FAZ) morphology, retinal layer thickness, and retinal hemodynamic properties in healthy controls and patients with diabetes mellitus (DM) with and with no mild DR (MDR) using Spectral-Domain Optical Coherence Tomography (Spectralis SDOCT, Heidelberg Engineering GmbH, Germany) and the Retinal Function Imager (Optical Imaging, Ltd., Rehovot, Israel). Our results showed a higher FAZ area and diameter in MDR patients. Blood flow analysis also showed that there is a significantly smaller venous blood flow velocity in MDR patients. Also, a significant difference in roundness was observed between DM and MDR groups supporting the development of asymmetrical FAZ expansion with worsening DR. Our results suggest a potential anisotropy in the mechanical properties of the diabetic retina with no retinopathy that may trigger the FAZ elongation in a preferred direction resulting in either thinning or thickening of intraretinal layers in the inner and outer segments of the retina as a result of autoregulation. A detailed understanding of these relationships may facilitate earlier detection of DR, allowing for preservation of vision and better clinical outcomes

    Integration and fusion of standard automated perimetry and optical coherence tomography data for improved automated glaucoma diagnostics

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The performance of glaucoma diagnostic systems could be conceivably improved by the integration of functional and structural test measurements that provide relevant and complementary information for reaching a diagnosis. The purpose of this study was to investigate the performance of data fusion methods and techniques for simple combination of Standard Automated Perimetry (SAP) and Optical Coherence Tomography (OCT) data for the diagnosis of glaucoma using Artificial Neural Networks (ANNs).</p> <p>Methods</p> <p>Humphrey 24-2 SITA standard SAP and StratusOCT tests were prospectively collected from a randomly selected population of 125 healthy persons and 135 patients with glaucomatous optic nerve heads and used as input for the ANNs. We tested commercially available standard parameters as well as novel ones (fused OCT and SAP data) that exploit the spatial relationship between visual field areas and sectors of the OCT peripapillary scan circle. We evaluated the performance of these SAP and OCT derived parameters both separately and in combination.</p> <p>Results</p> <p>The diagnostic accuracy from a combination of fused SAP and OCT data (95.39%) was higher than that of the best conventional parameters of either instrument, i.e. SAP Glaucoma Hemifield Test (p < 0.001) and OCT Retinal Nerve Fiber Layer Thickness ≥ 1 quadrant (p = 0.031). Fused OCT and combined fused OCT and SAP data provided similar Area under the Receiver Operating Characteristic Curve (AROC) values of 0.978 that were significantly larger (p = 0.047) compared to ANNs using SAP parameters alone (AROC = 0.945). On the other hand, ANNs based on the OCT parameters (AROC = 0.970) did not perform significantly worse than the ANNs based on the fused or combined forms of input data. The use of fused input increased the number of tests that were correctly classified by both SAP and OCT based ANNs.</p> <p>Conclusions</p> <p>Compared to the use of SAP parameters, input from the combination of fused OCT and SAP parameters, and from fused OCT data, significantly increased the performance of ANNs. Integrating parameters by including a priori relevant information through data fusion may improve ANN classification accuracy compared to currently available methods.</p

    Evolutionarily diverse origins of deformed wing viruses in western honey bees

    Get PDF
    Novel transmission routes can allow infectious diseases to spread, often with devastating consequences. Ectoparasitic varroa mites vector a diversity of RNA viruses, having switched hosts from the eastern to western honey bees (Apis cerana to Apis mellifera). They provide an opportunity to explore how novel transmission routes shape disease epidemiology. As the principal driver of the spread of deformed wing viruses (mainly DWV-A and DWV-B), varroa infestation has also driven global honey bee health declines. The more virulent DWV-B strain has been replacing the original DWV-A strain in many regions over the past two decades. Yet, how these viruses originated and spread remains poorly understood. Here, we use a phylogeographic analysis based on whole-genome data to reconstruct the origins and demography of DWV spread. We found that, rather than reemerging in western honey bees after varroa switched hosts, as suggested by previous work, DWV-A most likely originated in East Asia and spread in the mid-20th century. It also showed a massive population size expansion following the varroa host switch. By contrast, DWV-B was most likely acquired more recently from a source outside East Asia and appears absent from the original varroa host. These results highlight the dynamic nature of viral adaptation, whereby a vector's host switch can give rise to competing and increasingly virulent disease pandemics. The evolutionary novelty and rapid global spread of these host-virus interactions, together with observed spillover into other species, illustrate how increasing globalization poses urgent threats to biodiversity and food security

    Hemodynamic regulation in SHR: investigation by spectral analysis

    No full text

    Nonlinear analysis of BP signal. Can it detect malfunctions in BP control?

    No full text
    corecore